

(& T100MX+)

T100MD+

Triangle Research
International, Inc.

Super Programmable Controllers

User’s
Manual

Copyright Notice and DisclaimerCopyright Notice and Disclaimer

All rights reserved. No parts of this manual may be
reproduced in any form without the express written
permission of TRi.

Triangle Research International, Inc. (TRi) makes no
representations or warranties with respect to the contents
hereof. In addition, information contained herein are
subject to change without notice. Every precaution has
been taken in the preparation of this manual.
Nevertheless, TRi assumes no responsibility for errors or
omissions or any damages resulting from the use of the
information contained in this publication.

MS-DOS and Windows are trademarks of Microsoft Inc.
All other trademarks belong to their respective owners.

Conditions of Sale and Product Warranty

Triangle Research International Inc. (TRi) and the Buyer agree to
the following terms and conditions of Sale and Purchase:

1. The T100MD+and T100MX+ Programmable Controllers are

guaranteed against defects in materials or workmanship for
a period of one year from the date of registered purchase.
Any unit which is found to be defective will, at the discretion
of TRi, be repaired or replaced.

2. TRi will not be responsible for the repair or replacement of

any unit damaged by user modification, negligence,
abuse, improper installation, or mishandling.

3. TRi is not responsible to the Buyer for any loss or claim of

special or consequential damages arising from the use of
the product. The product must NOT be used in applications
where failure of the product could lead to physical harm or
loss of human life. Buyer is responsible to conduct their own
tests to meet the safety regulation of their respective
industry.

4. Products distributed, but not manufactured by TRi, carry the

full original manufacturers warranty. Such products include,
but are not limited to: power supplies, sensors, I/O modules
and battery backed RAM.

5. TRi reserves the right to alter any feature or specification at

any time.

Notes to Buyer: If you disagree with any of the above terms or
conditions you should promptly return the unit to the
manufacturer or distributor within 30 days from date of
purchase for a full refund.

Table of Contents

Chapter 1: Special I/Os and Analog Interfacing Page

1.1 Introduction 1-1
1.2 Special Digital I/Os 1-1
1.3 Stepper Motors Controller Outputs 1-2
1.4 PWM Outputs 1-4
1.5 Using High Speed Counter Inputs with Rotary Encoder 1-7
1.6 Using Interrupt Inputs 1-9
1.7 Using Pulse Measurement Inputs 1-10
1.8 Analog I/Os 1-10
1.9 Serial Communication Ports 1-13

1.9.1 COMM1: RS232C with Female DB9 1-13
1.9,2 COMM3: Two-wire RS485 Port (& Applications) 1-14
1.9.3 Changing Baud Rate and Communication Format: 1-16
 Use of SETBAUD Statement
1.9.4 Support of Multiple Communication Protocols 1-18
1.9.5 Accessing the COMM Ports from within TBASIC 1-19
1.9.6 Using Modem to Remotely Program/Monitor PLC 1-21
1.9.7 Constructing a 2nd Multi-drop Network 1-22

1.10 DIP Switches 1-22
1.11 CPU Status Indicators 1-23
1.12 Internal Relays, Timers & Counters, etc. 1-24

Chapter 2: Operating Procedure

2.1 Programming 2-1
2.2 Simulation 2-1
2.3 Transferring Program to PLC 2-1
2.4 Errors and Problems 2-2
2.5 On-Line Monitoring & Control 2-3

2.5.1 Monitoring PLC’s I/O Logic States 2-3
2.5.2 Viewing and Modifying PLC’s Internal Variables 2-3
2.5.3 Force Setting/Resetting I/O Bits 2-4
2.5.4 Suspending PLC’s Ladder Program 2-4

2.6 Ladder Monitoring 2-4
2.7 Get PLC’s Hardware Info 2-5
2.8 Set PLC’s Real Time Clock 2-5
2.9 Trouble-Shooting Communication Errors 2-6

Table of Contents

Chapter 3: Host Communication

3.1 Point-to-point Communication 3-2
3.2 Multi-Point Communication System 3-3

3.2.1 RS485 Network Interface Hardware 3-4
3.2.2 Protection of RS485 Interface 3-5
3.2.3 Single Master RS485 Networking Fundamentals 3-6
3.2.4 Multi-Masters RS485 Networking Fundamentals 3-7
3.2.5 Command/Response Block Format (Multipoint) 3-10
3.2.6 Communication Procedure 3-11

3.3 Shoud You Use Point-to-Point or Multi-point Protocol? 3-11
3.4 Trouble-Shooting RS485 Network 3-13

Chapter 4: Command / Response Format

4.1 Device ID Read 4-1
4.2 Device ID Write 4-1
4.3 Read Input Channels 4-1
4.4 Read Output Channels 4-2
4.5 Read Relay Channels 4-3
4.6 Read Timer Contacts 4-3
4.7 Read Counter Contacts 4-4
4.8 Read Timer Present Value (P.V.) 4-4
4.9 Read Timer Set Value (S.V.) 4-5
4.10 Read Counter Present Values (P.V.) 4-5
4.11 Read Counter Set Value (S.V.) 4-6
4.12 Read Variable - Integers (A to Z) 4-6
4.13 Read Variable - Strings (A$ to Z$) 4-6
4.14 Read Variable - Data Memory (DM[1] to DM[4000]) 4-6
4.15 Read Variable - System Variables 4-7
4.16 Read Variable - High Speed Counter HSCPV[] 4-8
4.17 Write Inputs 4-8
4.18 Write Outputs 4-8
4.19 Write Relays 4-9
4.20 Write Timer-Contacts 4-9
4.21 Write Counter-contacts 4-9
4.22 Write Timer Present Value (P.V.) 4-9
4.23 Write Timer Set Value (S.V.) 4-10
4.24 Write Counter Present Value (P.V.) 4-10
4.25 Write Counter Set Value (S.V.) 4-10
4.26 Write Variable - Integers (A to Z) 4-11
4.27 Write Variable - Strings (A$ to Z$) 4-11
4.28 Write Variable - Data Memories (DM[1] to DM[4000]) 4-11

Table of Contents

4.29 Write Variable - System Variables 4-12
4.30 Write Variable - High Speed Counter HSCPV[] 4-12
4.31 Update Real Time Clock Module 4-12
4.32 Halting the PLC 4-13
4.33 Resume PLC Operation 4-13
4.34 Read Analog Input 4-14
4.35 Read EEPROM Integer Data 4-15
4.36 Read EEPROM String Data 4-15
4.37 Write Analog Output 4-15
4.38 Write EEPROM Integer Data 4-16
4.39 Write EEPROM String Data 4-16
4.40 Force Set/Clear Single I/O Bit 4-16
4.41 Testing of Host Link Commands 4-17
4.42 Visual Basic Sample Program 4-17
4.43 Inter-PLC Networking Using NETCMD$ command 4-18
4.44 Inter-PLC Networking Using MODBUS Protocols 4-19
4.45 Using OMRON’s Host Link Commands
 I. Read IR Registers 4-20
 II. Write IR Registers 4-21
 I. Read Multiple DMs 4-21
 I. Write Multiple DMs 4-22

Chapter 5: MODBUS / OMRON Protocols Support

5.1 MODBUS ASCII Protocol Support 5-1
5.2 MODBUS RTU Protocol Support 5-4
5.3 OMRON Host Link Command Support 5-5
5.4 Appliation Example: Interfacing to SCADA Software 5-5
5.5 Using The T100M+ PLC as MODBUS Master 5-6

Chapter 1 Special I/Os and Analog Interfacing

1-1

1.1 Introduction

A Standard T100MD+ PLC features the following:

1) 4 to 8 channels of 10-bit Analog Inputs. (4 on T100MD1616+)
2) 1 to 2 channels of 8-bit Analog outputs.

3) 2-channel programmable Motion Controllers for controlling stepper motors up
to 20,000 pulses-per-second.

4) 2-channel Pulse Width Modulated (PWM) outputs.

5) 2-channel 32-bit High Speed Counters (HSC) counts up to 10,000 Hz.

6) 4-channel Interrupt Inputs.

7) 2-channel pulse measurement inputs capable of measuring frequency and
pulse-width of incoming pulses up to 10,000 Hz.

8) Real time Clock/Calendar for programming scheduled ON/OFF events.

9) 6016 Words (16-bit) of EEPROM Program Memory, expandable to 8190 Words
with optional IC - M2018P.

10) 1700 Words (16-bit) of programmable EEPROM for user’s data, expandable to
7750 Words with optional IC – M2018P.

11) Built-in 16 channels of PID-computation engines let T100M+ PLCs directly
provide PID type digital control for process automation.

12) One Independent RS232 port for connection to a host PC for programming or
monitoring.

13) One independent RS485 port for networking or for connecting to external
peripherals such as LCD display and RS485-based analog I/O cards, etc.

14) Industry Standard Protocols: Both RS232 and RS485 serial port simultaneously
support multiple communication protocols, as follow:

i) Native ASCII based Host Link Commands.
ii) MODBUS RTU protocols
iii) MODBUS ASCII Protocols
iv) OMRON C20H Host Link Commands.

15) Watch-Dog Timer (WDT) which resets the PLC if the CPU malfunctions due to
hardware or software error. A system reset by WDT can be determined by the
STATUS(1) command.

1.2 Special Digital I/Os

Four of the first 8 ON/OFF inputs of the T100M+ PLC can be configured as
“special inputs” such as High Speed Counters, Interrupts and Pulse
Measurement. Some of the first 8 outputs can also be configured as PWM
and the stepper controller pulse-outputs. If these special I/Os are not used,
then they can be used as ordinary ON/OFF type I/O in the ladder diagram.
Note that if two special functions share the same I/O then only one of them
can be active at any one time. The location of these special I/O are
tabulated as follows:

T100MD+ & MX+ PLCs Chapter 1 : Installation

1-2

Special Inputs

Input # High Speed Counter Interrupt Pulse Measurement
1 - - -
2 - - -
3 Ch #1: Phase A Ch #1 Ch #1
4 Ch #1: Phase B Ch #2 Ch #2
5 Ch #2: Phase A Ch #3 -
6 Ch #2: Phase B Ch #4 -
7 - - -
8 - - -

Note: A pin defined as a special input cannot simultaneously act as another
special input. E.g. Pin 3 cannot be used as high speed counter and at
the same time serves as a pulse measuring pin.

Special Outputs

Output # Stepper pulse output PWM output
1 Direction for Ch #1 -
2 Direction for Ch #2 -
3 -
4 -
5 Ch #1 -
6 Ch #2 -
7 - Ch #1
8 - Ch #2

 These special I/O therefore share the same electrical specifications as the
ON/OFF type I/O, which have already been described in the Installation
Guide.

1.3 Stepper Motors Controller Outputs

 Technical Specifications:
No. of Channels 2
Max. Pulse Rate (pps) 20000 (single channel running)

10000 (two channels running)
Maximum Load Current 1A @24V DC
Velocity Profile
(Defined by STEPSPEED)

Trapezoidal
-accelerate from 1/8 max pps to max pps.
-decelerate from max pps to 1/8 max pps)

Maximum number of steps 2 ~ 231 (= 2.1 x 109)
TBASIC commands STEPSPEED, STEPMOVEABS,

STEPCOUNTABS(), STEPMOVE,
STEPSTOP, STEPCOUNT()

It is essential to understand the difference between a stepper motor
“Controller” and a stepper motor “Driver”. A stepper motor “Driver”
comprises the power electronics circuitry that provides the voltage, current
and phase rotation to the stepper motor coils.

T100MD+ & MX+ PLCs Chapter 1 : Installation

1-3

The T100M+’s built-in Stepper-Motor Controller, on the other hand, only
generates the required number of "pulses" and sets the direction signal
according to the defined acceleration and maximum pulsing rate
specified by "STEPSPEED" and “STEPMOVE” commands. You cannot directly
connect the "pulses" to the stepper motor. You will need a stepper motor
"driver" which you can buy from the motor vendor. Depending on the
power output, the number of phases of the stepper motor, and whether
you need micro-stepping, the driver can vary in size and cost. Most stepper
motor drivers have opto-isolated inputs which accept a direction signal
and stepping-pulse signal from the "Stepper Motor Controller". In this case
the T100M+ is the "Stepper Motor Controller" which will supply the required
pulse and direction-select signals to the driver.

Note that the digital output #1 and #2 automatically become the
direction-select signals for Stepper controller #1 and #2, respectively when
the stepper controllers are being used. The direction pin is turned ON when
the motor moves in the negative direction and turned OFF when the
stepper motor moves in the positive direction. The STEPMOVEABS command
makes it extremely simple to position the motor at an absolute location,
while the STEPMOVE command let you implement incremental move in
either directions for each channel.

Interfacing to 5V Stepper Motor Driver Inputs

Some stepper motor drivers accept only 5V signals from the stepper motor
controller. In such case you need to determine whether the driver’s inputs
are opto-isolated. If they are then you can simply connect a 2.2K current
limiting resistor in series to the path from the PLC’s output to the driver’s
inputs, as shown in the following diagram:

Figure 1.1
However, if the stepper motor driver input is only 5V CMOS level and non
opto-isolated, then you need to convert the 12-24V outputs to 5V. This can

1

2

3

4

5

6

+24V

12-24V DC
Power Supply

for PLC

+V

0VT100MD1616+ PLC

OUTPUTS

GND

Direction Select Input

Stepping Pulse Input

Stepper Motor Driver

Calculation:
 IF = 10mA

R = (V - 5)/0.01
e.g. for V=24V,
R = (24-5)/0.01 =1.9K

Select R=2K2
Rating = 192/2200

= 0.16W
Use 0.5W resistor.

R

R

If

If

PLC’s Power Supply

T100MD+ & MX+ PLCs Chapter 1 : Installation

1-4

be achieved using low cost transistor such as a 2N4403. A better way is to
use an opto-isolator with logic level output as shown in Figure 1.2. This
provides a galvanic isolation between the PLC and the stepper motor
driver.

Figure 1.2 Conversion of T100MD+ outputs to 5V logic level

1.4 PWM Outputs

Pulse-Width Modulation (PWM) is a highly efficient and convenient way of
controlling output voltage to devices with large time constants, such as
controlling the speed of a DC motor, the power to a heating element or
the position of a proportional valve.

PWM works by first turning the output to full voltage for a short while and then
shutting it off for another short while and then turning it on again and so on
in accurate time intervals. This can be illustrated in the following diagram:

a b

Load
Voltage

V Full x V Full Average
 voltage a + b

a
=

The average voltage seen by the load is determined by the “duty cycle” of
the PWM wave form. The duty cycle is defined as follow:

Duty Cycle =

a

a + b
x 100%

 Period = (a + b)
 Frequency = 1/period Hz

5

6
7

8

12-24V DC
Power Supply

for PLC

+V

0V

OUTPUTS

GND

2K2 resistor
(2.2K)

Logic output
Optoisolator

 H11L2
or H11L3

(Quality Technology)

1

2
5

4

+5V

To 5V CMOS
stepper driver input

(5mA max)

6

0V (Stepper’s supply)

T100MD+ & MX+ PLCs Chapter 1 : Installation

1-5

Average voltage = % duty cycle multiplied by the full load voltage VFull.
Since the voltage applied to the load is either “Fully ON” or “Fully OFF”, it is
highly efficient because the switching transistors are working in their
saturated and cut-off region and dissipate very little power when it is fully
turned ON or OFF.

Technical Specifications:Technical Specifications:
No. of Channels 2
Duty Cycle range 0.00 to 100.00
Actual Resolution 0.4%
Available Frequencies (Hz) 16, 32, 63, 250, 500, 2000,

8000 and 32000 Hz
Relevant TBASIC commands setPWM

The frequency of the PWM waveform can also be varied. T100M+ supports
the following frequencies: 16, 32, 63, 250, 500, 2000, 8000 and 32000 Hz.
Usually it is better to select as high a frequency as possible because the
resulting effect is smoother for higher frequencies. However, some systems
may not respond properly if the PWM frequency is too high, in such cases a
lower frequency should be selected.

The TBASIC setPWM statement controls the frequency and duty-cycle
settings of the PWM channel. The T100M+ PLC features two channels of
PWM on its outputs #7 (PWM ch #1) and #8 (PWM ch#2). Since these two
outputs are high voltage, high current outputs (24V, 1A or 10A on some PLC
models) they can be used to directly control the speed of a small DC
motor. They can also directly drive proportional (variable position) valves
whose opening is dependent on the applied voltage.

Increasing Output Drive Current (Non OptoIncreasing Output Drive Current (Non Opto--Isolated)Isolated)

The T100MD888+ has two channel of 10A, current sinking PWM outputs
which should be sufficient for many applications. However, the two channel
PWM outputs on T100MD1616+ as well as the T100MX-3224R+ and
T100MX-4832+ are all limited to 1A current each. If you need to control
power devices that demand more than the 1A current on these PLCs you
can use the following circuit to amplify the drive current:

T100MD+ & MX+ PLCs Chapter 1 : Installation

1-6

PWM

+24V

S

D

G

2k2

2k2

IRF9530 or IRF9520
(P-channel MOSFET)

PLC’s
output 7 or 8

Load (max
12A @24VDC)

Figure 1.3

The MOSFET driver IRF9530 can drive up to 12A of currents (this is the actual
circuit designed into the two 10A PWM outputs on T100MD2424+).
However, note that the output will be converted into a “source” (PNP) type,
The above circuit is also not opto-isolated and hence you have to take the
usual precautions of preventing the large current load demand from
interfering with the power supply voltage of the PLC.

Increasing Output Drive Current (OptoIncreasing Output Drive Current (Opto--Isolated)Isolated)

The advantage of using PWM is that you can easily amplify the drive current
to a larger load such as a larger permanent magnet DC motor by using a
power transistor or power MOSFET to boost the current switching capability.
If the load is of different voltages and the load current is high, you should
use an opto-isolator to isolate the PLC from the load, as in Figure 1.4

5

6

7 (PWM1)

8

12-24V DC
Power Supply

for PLC

+V

0V

OUTPUTS

GND

2K2

+-

Flyback Diode

~

Bridge
Rectifier

AC SourceM
4N35

Optoisolator

1

2

S

D

G

N-channel Power MOSFET
e.g. IRF530 can sink 12A DC

at up to DC100V max.
Voltage divider to obtain approx.
10V DC at gate G. For DC48V
load, choose R1 = 3.9K, R2=1K

R1

R2

5

4

6

220K

Figure 1.4 PWM Speed Control of a large DC Motor.

T100MD+ & MX+ PLCs Chapter 1 : Installation

1-7

Note:
a) The opto-isolator must be able to operate at a frequency matching that

of the PWM frequency, otherwise the resulting output waveform will be
distorted and effective speed control cannot be attained.

b) The simple PWM speed control scheme described above is open-loop
type and does not regulate the speed with respect to changing load
torque. Closed-loop speed control is attainable if a tachometer (either
digital or analog) is used which feeds back to the CPU the actual speed.
Based on the error between the set point speed and the actual speed,
the software can then adjust the PWM duty cycle accordingly to offset
speed variation caused by the varying load torque. A PID function may
also be invoked to provide sophisticated PID type of speed control.

c) The T100M+ PWM can be used to control the speed of small motors. For
larger motors, industrial- strength variable-speed drivers should be used
instead.

1.5 Using High Speed Counter Inputs with A Rotary Encoder

Technical Specifications:Technical Specifications:
No. of Channels 2
Maximum acceptable pulse rate 10KHz for T100MD

4KHz for T100MX
Quadrature signal decoding Automatic
Relevant TBASIC Commands HSCDEF, HSCOFF, HSCPV[]

Descriptions:Descriptions:

Input #3, 4 and Inputs #5, 6 form two channels of high speed counter
inputs which can interface directly to a rotary encoder that produces
“quadrature” outputs. A quadrature encoder produces two pulse trains at
90o phase shift from each other as follows:

Direction of Rotation 90o

Phase A

Phase B

90o Direction of Rotation

When the encoder shaft rotates in one direction, phase A leads phase B by
90 degrees. When the shaft rotates in the opposite direction, phase B will
lead phase A by 90 degrees. The quadrature signals therefore provide an
indication of the direction of rotation.

T100M+ handles the quadrature signals as follows: if the pulse train arriving
at input #3 leads the pulse train at input #4, the High Speed Counter (HSC)

T100MD+ & MX+ PLCs Chapter 1 : Installation

1-8

#1 increments on every pulse. If the pulse train arriving at input #3 lags the
pulse trains at input #4, then the HSC #1 decrements. Note that if input #4
is OFF, then pulse trains arriving at input #3 is considered to lead the input
#4 and HSC #1 will be incremented. Likewise if input #3 is OFF, then pulse
trains arriving at input #4 will decrement HSC #1.

Input #5 and #6 form the inputs for High Speed Counter channel #2 and
they operate in the same way as Input#3 and #4 for HSC#1 described
above.

The fact that the T100M+ PLC automatically takes care of the direction of
rotation of the quadrature encoder greatly simplifies the programmer’s task
of handling high-speed encoder feedback. The HSCdef statement can be
used to define a CusFn to be executed when the HSC reaches a certain
pre-defined value. Within this CusFn you can define the action to be taken
and define the next CusFn to be executed when the HSC reaches another
value.

Enhanced Quadrature DecodingEnhanced Quadrature Decoding

The default method in which the PLC handles quadrature signal as
described above is somewhat simplistic. It does not take into consideration
the “jiggling” effect that occurs when the encoder is positioned at the
transition edge of a phase. Mechanical vibration could cause multiple
counts if the rotor shaft “jiggle” at the transition edge of the phase, resulting
in multiple triggering of the counter. This simplistic implementation,
however, does have the advantage that the HSC can also be used for
single-phase high-speed counting.

For M-series PLC with firmware revision of r39 and above, an enhanced
quadrature decoding routine is provided which will lock out multiple
counting by examining the co-relationship between the two phases. You
can configure the M-series PLC to use the enhanced quadrature counting
by using the SETSYSTEM command, as follows:

SETSYTEM 4, n.

n=0 == simple decoding for both HSC1 & HSC2 (default).
n=1 for enhanced quadrature decoding in HSC1 only.
n=2 for enhanced quadrature decoding in HSC2 only
n=3 for enhanced quadrature decoding in both HSC1 & HSC2.

Interfacing to 5V type Quadrature EncoderInterfacing to 5V type Quadrature Encoder

If you have a choice, you should select an encoder that can produce 12V
or 24V output pulses so that they can drive the inputs #3,4,5 or 6 directly. If
you have 5V type of encoder only, then you need to add a transistor driver
to interface to the PLC’s inputs. The simplest way is to use an IC driver
ULN2003 connected as shown in Figure 1.5.

T100MD+ & MX+ PLCs Chapter 1 : Installation

1-9

T100MD1616+

Input #31

2

16

15

8
GND

Input #4

5V Phase A

5V Phase B

+5V

 0V

Encoder

ULN2003A

PLC’s 0V terminal

Figure 1.5 Interfacing 5V type Rotary Encoder

1.6 Using Interrupt Inputs

During normal PLC ladder program execution, the CPU scans the entire
ladder program starting from the first element, progressively solving the
logic equation at each circuit until it reaches the last element. After which
it will update the physical Inputs and Outputs (I/O) at the end of the scan.
Hence the location of a logic element within the ladder diagram is
important because of this sequential nature of the program execution.

When scanning the ladder program, the CPU uses some internal memory
variables to represent the logic states of the inputs obtained during the last
I/O refresh cycle. Likewise, any changes to the logic state of the outputs are
temporarily stored in the output memory variable (not the actual output pin)
and will only be updated to the physical output during the next I/O refresh.

You may see that any changes to the input logic state will only be noticed
by the CPU when it has completed the current scan and starts to refresh its
input variables. The input logic state must also persist for at least one scan
time to be recognized by the CPU. In some situations this may not be
desirable because any response to the event will take at least one scan
time or more.

An interrupt input, on the other hand, may occur randomly and the CPU will
have to immediately suspend whatever it is doing and start “servicing” the
interrupt. Hence the CPU responds much faster to an interrupt input. In
addition, interrupts are “edge-triggered”, meaning that the interrupt
condition occurs when the input either changes from ON to OFF or from
OFF to ON. Consequently, the input logic state need not persist for longer
than the logic scan time for it to be recognized by the CPU.

T100MD+ & MX+ PLCs Chapter 1 : Installation

1-10

Any one or all of inputs #3 to #6 can be used as interrupt inputs when
defined by the INTDEF statement. The Interrupt inputs may also be defined
as either rising-edge triggered (input goes from OFF to ON) or falling-edge
triggered (input goes from ON to OFF). When the defined edges occur, the
defined CusFn will be immediately executed irrespective of the current
state of execution of the ladder program.

1.7 Using Pulse Measurement Inputs

T100M+ PLC provides a very straightforward means to measure the pulse
width or frequency of a square-wave pulse-train arriving at its Pulse
Measurement (PM) inputs #3 or #4.

To use the input to measure pulse width or frequency, execute the PMON
statement to configure the relevant input to become a pulse
measurement input. Thereafter the pulse width (in μs) or the pulse
frequency (in Hz) can be easily obtained from the PULSEWIDTH(n) or
PULSEFREQUENCY(n) function.

0V

T100MD PLC

Input #3

Motor

NPN type
Optical
Sensor

+24V

 Figure 1.6 Setting Up a Simple Tachometer or Encoder

Applications

1) One useful application of the PM capability is to measure the speed of
rotation of a motor. A simple optical sensor, coupled with a rotating disk
with slots fitted to the shaft of a motor (see Figure 1.6) can be
fabricated economically. When the motor turns, the sensor will
generate a series of pulses. The frequency of this pulse train relates
directly to the rotational speed of the motor and can be used to
provide precise speed control. Note that the above setup can also
double as a low cost position-feedback encoder when used with the
high speed counter, since the number of pulses counted can be used
to determine the displacement.

2) Some transducers incorporate Voltage-Controlled-Oscillator (VCO) type
of outputs that represent the measured quantities in terms of varying

T100MD+ & MX+ PLCs Chapter 1 : Installation

1-11

frequency of the output waveform. Such transducers may be used
conveniently by T100M+ PLCs using the pulse measurement capability.
However, the frequency of such signal must be below 10,000 Hz.

3) For an application that requires measurement of the frequency of a

high-speed counter, you will need to feed the pulse inputs into both
input #3 and Input #5. In this case HSC #2 is used together with PM #1
to count the input pulses as well as measure its frequency. This is
because an input pin that has been defined as High Speed Counter
cannot simultaneously be defined as Pulse measurement pin. If you
execute both the HSCDEF 1 and PMON 1 in the same program, the last
executed command will take precedence.

1.8 Analog I/Os

A/D Electrical CharacteristicsA/D Electrical Characteristics
No. of A/D channel : 4 to 8 depending on the model.
Resolution: :10-bit
Built-in Sample & Hold : Yes.
Conversion Time :10µs per channel.

D/A Electrical CharacteristicsD/A Electrical Characteristics
No. of A/D channel : 1 or 2, depending on the model.
Resolution: : 8-bit
Conversion Time : 10µs per channel.

Notes:Notes:

1) Although the A/D converters’ actual resolutions are only 10-bit and the D/A
converters’ actual resolutions are only 8-bit, T100M+ PLCs normalize all the
analog data to 12-bit numbers. Hence you will find that ADC(n) function returns
the value as 0,4,8,12,16....4092 (not 4095 since the least significant two bits are
always zero). Similarly, the D/A converters shift the 12-bit normalized value
applied to it by four bits to the right to convert it into an 8-bit quantity before
applying the value to the DAC hardware. Hence the full scale value of D/A
occur when the actual digital code = 255. When normalized to 12-bit quantities
= 255 x 16 = 4080.

 The reason for normalizing all analog data to 12-bit is that in future if new models

of PLCs with higher resolution A/D or D/A converters are introduced, the user’s
PLC program need not be modified since there will not be needs to change the
computational expression when all data are already treated as 12-bit full-scale.

T100MD+ & MX+ PLCs Chapter 1 : Installation

1-12

4092

4088

4084

4

8

12

0
Input Voltage

AVCC
0

1

ADC(n) value

Figure 1.7 Transfer Function for 10-bit ADC.

4080

DAC Output
AVCC

255
256

SetDAC value

254
256

1
256

4064

2
256

16 32 480

Figure 1.8 Transfer Function for 8-bit DAC.

Interfacing to Industrial Analog Sensors

Real world sensors such as a J- or K-type thermo-couple temperature probe
produce only micro volts of signal voltage in response to temperature
changes. These signals are too weak to be read by the A/D converters and
hence they must be amplified to a higher voltage and current level before
they can be read by the 0-1V or 0-5V range of the Analog inputs. The
amplification stage is known as a Signal Conditioner. A Signal Conditioner
consists of a precision instrumentation amplifier circuit to eliminate common

T100MD+ & MX+ PLCs Chapter 1 : Installation

1-13

mode noise that will swamp the weak signal if not handled properly. You can
buy standard ready-made signal conditioners for a J or K type thermocouple
or you can create you own using a highly integrated single-chip IC available
from vendors such as Analog Device Inc (e.g. AD594/AD595) or from Linear
Technology Inc.

The signal conditioners may have their own power supply. When selecting a
signal conditioner, make sure that you select one with output signal in either
0-1V, 0-5V, 0-10V, 0-20mA or 4-20mA ranges to match that available on the
PLC so that the analog data can be read easily.

1.9 Serial Communication Ports

The latest revision (Rev. D or D-1) of the T100M+ features two independent
serial ports that can simultaneously communicate with other devices using a
variety of protocols. They can also be programmed to accept or send ASCII
or binary data using the TBASIC built-in commands such as INPUT$(n),
INCOMM(n), PRINT #n, OUTCOMM n, d.

The first serial port (COMM1) is an RS232C port, which is compatible with most
PC RS232C ports. The second serial port (COMM3) is a two-wire RS485 port
that allows multiple PLCs to be connected to a single host computer or a
master PLC for networking or to implement a distributed control system.

1.9.1 COMM1: RS232C Port with Female DB9 Connector

 This port is configured as a DCE (Data Communication Equipment)
and is designed to connect directly to the PC’s serial port without the
need for a null modem. COMM1 communicates with the host
computer at a default baud rate of 38,400 bit-per-second with 8 data
bits, 1 stop bit and no parity. if DIP switch SW1-4 is set during power-on,
COMM1 default baud rate will be changed to 9600 baud. This is the
main communication port for program transfer and on-line monitoring
of the PLC. The pin connections with the host PC are shown below:

Figure 1.9 Connecting COMM1 with PC

T100MD+ & MX+ PLCs Chapter 1 : Installation

1-14

 However, to connect COMM1 to another DCE device (e.g., a
modem), you need to make a special cable which swaps the transmit
and receive signals, as follow:

1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 99 9

Modem
(Female DB9)

T100MD COMM1
(Female DB9)

Special cable

Figure 1.10 Connecting COMM1 to a MODEM

 Pin 4 and 6 are handshaking signals whose presence may be required

by some modems to work properly, so these pins are connected as
shown in the diagram.

1.9.2 COMM3: Two-wire RS485 Port

 This half-duplex port is meant for networking or for connecting to
optional peripherals such as a serial LCD message-display unit
(MDS100), touch panel HMI or for inter-communication between PLCs.

Up to 32 RS232 devices may be linked together in an RS485 network.
By replacing the RS485 driver with a low power RS485 driver IC such as
SN75HVD3082, up to 256 PLCs may be connected together.

 The RS485 port is available on a 2-way screw terminal to the left side

of the power supply terminal (please refer to Installation Guide). For
successful communication using the RS485 port, you need to
correctly connect the ‘+’ and ‘-’ terminals to the RS485 equipment
using a twisted pair cable. If you are using the PC as the network host,
you will need a RS232C-to-RS485 converter such as the “Auto485”. The
following describes some possible uses of the RS485 port.

a) PROGRAMMING AND MONITORING

A T100M+ PLC can be programmed via its RS485 port on a one-
to-one or multi-drop manner. Since most PCs only have RS232
port(s) you need to purchase a RS232-to-RS485 converter in order
to program the PLC via its COMM3 port. Most commonly available
type of RS485 converters today use the RTS signal to control the
RS485 transmitter direction, which is supported by TRiLOGI Version
4.x and the TLServer software. However, we strongly recommend
auto-turnaround type of converter such as the Auto485 adapter
(configured in ‘Auto’ mode) for use with Windows program. Under

T100MD+ & MX+ PLCs Chapter 1 : Installation

1-15

Windows, the application software does not have very deterministic
control of the RTS pin at precise timing and that can contribute to
occasional loss of communication when the RS485 transceiver is
not switched at proper moment.

Programming via COMM3 is particularly useful if COMM1 is already
assigned to other tasks such as interfacing to modem, bar code
readers, SCADA system or MMI, the programmer can continue to
program and monitor the PLC using its RS485 port while its COMM1
is actively communicating with other devices. This makes it much
easier to troubleshoot communication problems at COMM1 since
you can continuously monitor the data exchange between the
PLC and the external devices connected to its COMM1.

b) CONNECT MANY PLCs TO A ONE TLSERVER OR ETHERNET

XSERVER: An Ethernet XServer or a single PC running the TLServer
program can provide network services to all the PLCs connected
to it via RS485 for remote programming, monitoring and control
via the Internet using the Internet TRiLOGI 5.x or TRi-ExcelLink clients.

c) DISTRIBUTED CONTROL: Another important use of the RS485

port will be to connect a T100M+ PLC to other M-series, H-series or
E10+ PLCs. One T100M+ PLC will act as the master and all other
PLCs will act as slaves. Each PLC must be given a unique ID. The
master will send commands to all the slaves using the “NETCMD” or
READMODBUS, WRITEMODBUS, READMB2, WRITEMB2 statements and
coordinate information flow between the PLCs. This allows a big
system to be built by employing multiple units of M or H-series PLCs
connected in a network. This results in more elegant
implementation of complex control systems and simplifies
maintenance jobs.

d) INTERFACING OTHER DEVICES TO MODBUS OR INTERNET:

Since the T100M+ PLC supports MODBUS protocols, a master PLC
can serve as the gateway to interface non MODBUS-enabled PLCs
such as the H-series and E10+ PLCs, or the I-7000 analog modules
to third party SCADA software or MMI hardware that speaks
MODBUS. It also allows these devices to be controlled or monitored
on the Internet via a T100M+ PLC. The master T100M+ will use its
RS485 port to pull data from these devices into its data-memory.
The data memory in the T100M+ PLCs are in turn accessible by a
SCADA program using the MODBUS protocol and are also
accessible from the Internet using the TRiLOGI client/server
software.

T100MD+ & MX+ PLCs Chapter 1 : Installation

1-16

1.9.3 Changing Baud Rate and Communication Formats: Use of the
SETBAUD Statement

 The T100M+ PLC’s COMM ports are highly configurable. Both COMM

ports can be set to a wide range of baud rates. You can also program
them to communicate in either 7 or 8 data bits, 1 or 2 stop bits, odd,
even or no parity. The baud rate and communication formats of the
serial ports are set by the following command:

SETBAUD ch, baud_no

ch represents the COMM port number (1 or 3 only). The baud_no
parameters takes value from 0 - 255 (&H0 to &HFF) which gives
additional configuration of communication format. The upper 4 bits of
baud_no specify the communication format (number of data bits,
number of stop bits and parity) and the lower 4 bits represent the baud
rate. Hence the baud_no for 8 data bit,1 stop bit and no parity is the
same as the old models, providing compatibility across the family.
Once the new baud rate has been set, it will not be changed until
execution of another SETBAUD statement or when the power is turned
OFF. The baud rate is not affected by software RESET. The available
baud rates and their corresponding baud rate numbers for COMM1
are shown below:

FormatFormat baud_no FormatFormat baud_no
8, 1, n 0000 xxxx 8, 2, n 0001 xxxx
8, 1, e 0100 xxxx 8, 2, e 0101 xxxx
8, 1, o 0110 xxxx 8, 2, o 0111 xxxx
7, 1, n 1000 xxxx 7, 2, n 1001 xxxx
7, 1, e 1100 xxxx 7, 2, e 1101 xxxx
7, 1, o 1110 xxxx 7, 2, o 1111 xxxx

Where xxxx represents the baud rate of the comm port, as follow:

x x x x 0000 0001 0010 0011 0100 0101 0110 0111
Baud Rate 2400 2400 4800 9600 19200 31250 38400 62500

x x x x 1000 1001 1010 1011 1100 1101 1110 1111
Baud Rate 100K 250K 500K 110 150 300 600 1200

A table of all the available baud rates and COMM formats is shown in
the following page. The communication format written as 7,2,e
means 7 data bits, 2 stop bits and even parity. Likewise, 8,1,n means
8 data bits, 1 stop bit and no parity. You can use the table to select
the baud number for a certain baud rate and COMM format. Note
that the circuit design of COMM1 limits its physical maximum baud
rate to 100kbps, although its UART can work at up to 500K bits per
second. COMM3 can work at the higher baud rate of up to 500K bps.

T100MD+ & MX+ PLCs Chapter 1 : Installation

1-17

Baud No Table (All numbers in Hexadecimal: &H00 to &HFF)

Format
Baud

8,1,n

8,1,e

8,1,o

7,1,n

7,1,e

7,1,o

8,2,n

8,2,e

8,2,o

7,2,n

7,2,e

7,2,o

110 0B 4B 6B 8B CB EB 1B 5B 7B 9B DB FB
150 0C 4C 6C 8C CC EC 1C 5C 7C 9C DC FC
300 0D 4D 6D 8D CD ED 1D 5D 7D 9D DD FD
600 0E 4E 6E 8E CE EE 1E 5E 7E 9E DE FE
1200 0F 4F 6F 8F CF EF 1F 5F 7F 9F DF FF
2400 01 41 61 81 C1 E1 11 51 71 91 D1 F1
4800 02 42 62 82 C2 E2 12 52 72 92 D2 F2
9600 03 43 63 83 C3 E3 13 53 73 93 D3 F3

19200 04 44 64 84 C4 E4 14 54 74 94 D4 F4
31250 05 45 65 85 C5 E5 15 55 75 95 D5 F5
38400 06 46 66 86 C6 E6 16 56 76 96 D6 F6
62500 07 47 67 87 C7 E7 17 57 77 97 D7 F7
100K 08 48 68 88 C8 E8 18 58 78 98 D8 F8
250K 09 49 69 89 C9 E9 19 59 79 99 D9 F9
500K 0A 4A 6A 8A CA EA 1A 5A 7A 9A DA FA

E.g. To set baud rate of COMM3 to 19200, 7 data bit, 1 stop bit and
even parity, execute the statement: SETBAUD 3, &HC4

Important: Since the two COMM ports are independent, they can
be set to different format and baud rate from each other. Please
note that if you change the baud rate or communication format to
something that is different from that set in the TLServer, then both
the TLServer and TRiLOGI will no longer be able to communicate
with the PLC via this COMM port. You will have to either configure
the TLServer’s serial port setting using its “Serial Communication
Setup” routine to match the PLC, or you can cycle the power to the
PLC to reset the COMM port to the default format (38,400, 8,n,1).

If you had used “1st.Scan” contact to activate the SETBAUD
command than you will need to cycle the power to the PLC with
DIP switch #4 set to ON to halt the execution of the SETBAUD
command. (Also remember that when the PLC is reset this way, its
COMM1 will power up at 9600 bps only so you will need to
temporarily configure TLServer’s serial port to 9600bps to
communicate with it.) If you need to re-access the port using
TRiLOGI, then you will need to reset the PLC with DIP switch #4 set
to ON so that the program will not execute a SETBAUD command.

1.9.4 Support of Multiple Communication Protocols

 The T100M+ PLC is a real communication wizard! It has been
designed to understand and speak many different types of

T100MD+ & MX+ PLCs Chapter 1 : Installation

1-18

communication protocols, some of which are extremely widely used
de facto industry standard, as follows:

 a) NATIVE HOST LINK COMMAND
 b) MODBUS ASCII (Trademark of Groupe Schneider)
 c) MODBUS RTU* (Trademark of Groupe Schneider)
 d) OMRON C20H protocols. (Trademark of Omron Corp of Japan)

 The command and response formats of the “NATIVE” protocols are
described in details in Chapter 3 & 4. The other protocols and their
address mapping to T100M+ are described in Chapter 5. The two
independent COMM ports 1 & 3 support all the above protocols.
Each COMM port can communicate using the same or different
protocols independent of the other. The most wonderful feature of
T100M+ PLC is that the support of all the above-mentioned protocols
can be fully automatic and totally transparent to the users. There is no
DIP switch to set and no special configuration software to run to
configure the port for a specific communication protocols. The
following describes how the automatic protocol recognition scheme
works:

1) When the PLC is powered ON, both COMM ports are set to the

“AUTO” mode, which means that they are open-minded and listen
to all serial data coming through the COMM ports. The CPU tries to
determine if the serial data conforms to a certain protocol and if
so, the COMM mode is determined automatically.

2) Once the protocol is recognized, the CPU sets that COMM port to
a specific COMM mode which enables it to process and respond
only to commands that conform to that protocol. Error detection
data such as the “FCS”, “LRC” or CRC are computed accordingly
which are used to verify the integrity of the received commands. If
errors are detected in the command the CPU responds in
accordance with the action specified in the respective protocols.

3) When the COMM port enters a specific COMM mode, it will regard
commands of other protocol as errors and will not accept them.
Hence for example if COMM #1 has received a valid MODBUS RTU
command which puts it in a “RTU” mode, it will no longer respond
to TRiLOGI’s attempts to communicate with it using the “NATIVE”
mode. You will receive a communication error if you try to use
TRiLOGI to access a PLC COMM port that has just been
communicating in other protocol modes.

4) To improve the flexibility of switching from one COMM mode to
another, The T100M+ incorporates a COMM mode self-reset timer
such that a specific COMM mode will time out automatically and
enters into “AUTO” mode after 10 seconds if no more commands
are received from that COMM port. When a user wants to switch

T100MD+ & MX+ PLCs Chapter 1 : Installation

1-19

from one COMM mode to another he/she often will be changing
the serial connector from one device to another. During this time
there is no data received by the COMM port which presents an
opportunity for it to reset its COMM mode. However, the surest way
to reset the specific COMM mode is to cycle the power to the PLC
so that its COMM port will be reset to “AUTO” mode and ready to
communicate with any supported protocols.

5) if you wish to use the COMM port for serial data input only, you can

use the SETPROTOCOL command to set the COMM port to NO
PROTOCOL. This can prevent the PLC from erroneously treating
some serial data as the header of an incoming communication
protocol and respond to it automatically.

SETPROTOCOL can also be used to set the PLC to a specific
protocol. This may be desirable if the COMM port has a specific
role and you do not want it to enter other modes by mistake.
Please refer to the TBASIC Programmer’s Reference manual for
detailed description of the SETPROTOCOL command.

Note: if you fix a COMM port to a non-native, non-auto mode
TRiLOGI will not be able to communicate with the PLC anymore.
You may have to power-cycle the PLC to reset the COMM mode. If
you use “1st.Scan” contact to activate the SETPROTOCOL
command than you will need to cycle the power to the PLC with
DIP switch #4 set to ON to halt the execution of the SETPROTOCOL
command. (Also remember that when the PLC is reset this way, its
COMM1 will power up at 9600 bps only so you will need to
temporarily configure TLServer’s serial port to 9600bps to
communicate with it.)

1.9.5 Accessing the COMM Ports from within TBASIC

 Besides responding automatically to specific communication
protocols described in section 1.9.4, both the serial ports COMM #1
and #3 are fully accessible by the user program using the TBASIC
commands: INPUT$, INCOMM, PRINT # and OUTCOMM. It is
necessary to understand how these commands interact with the
operating system, as follow:

 When serial data are received by a COMM port, the operating system

of T100M+ automatically stores them into a 256 bytes circular buffer
so that they can be retrieved by user programs later. The serial data
are buffered even if they are incoming commands of one of the
supported protocols described in section 1.9.4. In addition,
processing of a recognized protocol command does not remove the

T100MD+ & MX+ PLCs Chapter 1 : Installation

1-20

characters from the serial buffer queue so these data are still visible to
the user’s program.

Each COMM port has its own separate 256-byte serial-in buffer. As
long as the user-program retrieves the data before the 256-byte
buffer is filled up, no data will be lost. If more than 256 bytes have
been stored the buffer wraps around and the oldest data is
overwritten first and so on. The following describes how INCOMM and
INPUT$, PRINT # and OUTCOMM functions interact with the serial buffer:

a) INCOMM (n)

Every execution of the INCOMM(n) function removes one
character from the circular buffer. When no more data is available
in the buffer this function returns a -1. The data removed by
INCOMM will no longer be available for the INPUT$ command.

b) INPUT$(n)

When the INPUT$(n) function is executed, the CPU checks the
COMM #n buffer to see if there is a byte with the value 13 (the
ASCII CR character) which acts as a terminator for the string. If a
string is present, all the characters that make up the string will be
removed from the COMM buffer. If a completed string is not
present then the COMM buffer will not be affected and INPUT$(n)
returns a null string. This ensures that before a complete string is
received the serial characters will not be lost because of the
unsuccessful execution of the INPUT$(n) function.

c) PRINT #n

The PRINT statement transfers its entire argument to a 256 byte
serial-out buffer which is separate from the serial-in buffer. The PRINT
statement therefore does not affect the content of the serial buffer
for incoming characters. The operating system handles the actual
transfer of each byte of data out of the serial-out buffer in a timely
manner. Again each COMM port has its own independent, 256-
byte serial-out buffer and hence the two serial ports can operate
totally independent of each other.

Note that the PLC automatically enables the RS485 transmit driver
when it sends serial characters out of its COMM3 port. When the
stop bit of the last character in the serial-out buffer has been sent
out, the operating system immediately disables the RS485 driver
and enables the receiver. This greatly eases the use of the RS485
port since there is no need for user to bother with the often-critical
timing of controlling the RS485 driver/receiver direction.

T100MD+ & MX+ PLCs Chapter 1 : Installation

1-21

d) OUTCOMM

This command sends only a single byte out of the serial COMM
port without going through the serial out buffer. For COMM3, it
enables the RS485 transmitter before sending the character and
disables it immediately after the stop bit has been sent out.

1.9.6 Using Modem to Remotely Program/Monitor T100MD+ PLC

TLServer 2.x supports remote dial up to T100MD+ PLC via standard,
off-the-shelf modems. It takes two modems to communicate
between two devices. The host end of the modem setup and
configuration is handled TLServer software itself, whereas on the PLC
side the PLC has to configure the modem so that it can successfully
communicate with the host computer running TRiLOGI.

a) Wiring

The modem is often connected to the PLC’s COMM1. Since the
serial port on most modems are DCE type, you will need a make a
special (also known as null-modem) cable to connect them as
shown in figure 1.10. If the modem only has a DB25 connector you
can connect the wires as shown in the following diagram:

1 1
2 2
3 3
4 4
5 5
6 6
7 7
8
99

20

Modem
(Female DB25)

T100MD COMM1
(Female DB9)

 Figure 1.11 Connecting T100MD+ COMM1 to a modem’s DB25 port

Note that pin 6 (DSR) and pin 20 (DTR) at the modem end are tied
together. This is often required to inform the modem that the
device is ready for operation so that the modem can work
properly. A modem may also be connected to COMM3 for multi-
drop remote programming and monitoring using TRiLOGI 5.x
software. However, you will need to purchase an auto-turnaround
type RS232-to-RS485 converter, such as the “Auto485”.

b) Programming

Please refer to the Internet TRiLOGI version 5.2 Programmer’s
Reference guide, Chapter 3 for programming details for the PLC to
communicate with the PC via modem.

T100MD+ & MX+ PLCs Chapter 1 : Installation

1-22

1.9.7 Constructing a 2nd Multi-drop Network

 For complex distributed applications, the built-in RS485 port may be
required for internal networking between PLCs for data exchange. Yet
some or all the PLCs may need to be connected to a SCADA system
or MMI. It is possible to construct a second multi-drop network around
the PLC COMM port #1. However, this will require a 4-wire RS485 or
RS422 construction since the PLC COMM port #1 does not have built-
in signal to enable/disable the transmitter and receiver of an RS485
driver IC. It is required that each PLC has an RS232-to-4-wire
conversion interface so that they can be connected by a four-wire
RS485/RS422 network to the SCADA host system. Of course there
must also be a 4-wire RS485/RS422 converter at the host computer.
The two COMM ports capability of the T100MD+ (Rev D) can be used
to their fullest extent in such a situation. Please consult your local
supplier or email to: info@tri-plc.com for questions regarding such
applications.

1.10 DIP SWITCHES

DIP Switch OFFOFF ONON

SW1-1 All outputs, relays,
timers and counter
values are non-
retentive.

Without MX-RTC module - no effect.
If MX-RTC module has been installed, then all the
I/Os, timers and counters as well as all internal
variables retain their value after power off in the
battery-backed RAM. DAC, PWM data will not be
retained, however.

SW1-2 - -
SW1-3 - -
SW1-4 Normal Run mode Suspends execution of ladder logic program. But

host communication remains active. When power-
on with this switch closed, default baud rate for
COMM1 = 9600 bps instead of 38,400 bps.

Usefulness of SW1-4

We have taken every effort to ensure that the host communication is always
available even when the user-program ends up in a dead-loop. This allows
the user to re-transfer a new program to the PLC and overwrite the bad
program. However, you may still encounter a situation whereby after
transferring a new program to the PLC, you keep encountering
communication error and could not erase the bad program. This is
especially common if you are playing with the communication commands
such as SETBAUD, SETPROTOCOL, PRINT or OUTCOMM which may modify
the communication baud rate, communication format or protocol or
sending data out of a COMM port that conflicts with TRiLOGI. In such cases

T100MD+ & MX+ PLCs Chapter 1 : Installation

1-23

you can turn ON DIP Switch SW1-4 and perform a power-on reset for the
PLC. The PLC will not execute the bad program that causes
communication problem and you can then transfer a new program into
the PLC to clear up the problem.

Note that when the PLC is power-reset with DIP Switch #4 set to ON, it’s
default baud rate and communication format for COMM1 becomes 9600,
8,n,1 (COMM3 is not affected). You will need to manually change the
TLServer’s serial port settings to 9600,n,8,1, in order to communicate with
the PLC after a power-reset with DIP Switch #4 set to ON. (Remember to
switch back to 38,400 after you have cleared the offending PLC program,
otherwise if the PLC is again power-reset with DIP Switch #4 turned OFF, you
will face problem communicating with it again because this time it would
assume a baud rate of 38,400!!).

1.11 CPU Status Indicators

There are three LED indicators on
T100MD+ with the markings shown
on the right (T100MX has a fourth
indicator named “WDT” which
indicate a “Watch Dog Timer” reset)

RTC
Error

Pause Run
Error

All these indicators will be lighted up during power-on when the CPU loads
the PLC program from EEPROM. Thereafter they should go off and if any one
of them remains lighted it represents the various operating status of the PLC
as follow:

a) RTC Error (Green LED)

 This indicator will be turned ON after a power-ON or WDT reset unless an
optional battery-backed MX-RTC module has been installed. This
indicates that the real-time clock (RTC) has been reset to some factory’s
pre-set date and time. The RTC.Err flag in the “Special Bit” menu will also
be turned ON. This indicator will be turned OFF automatically after you
have set the PLC’s date and time using the “Set PLC’s Real Time Clock”
command in the “Controller” pull-down menu.

b) Pause (Red LED)

 This indicator will be turned ON if one of the following occurred:

i) PLC’s EEPROM is corrupted.
ii) A PAUSE statement has been executed
iii) The user halts the PLC by pressing the <P> key during On-Line

Monitoring.
iv) DIP-Switch SW1-4 is turned ON which halts the program.

T100MD+ & MX+ PLCs Chapter 1 : Installation

1-25

 If this light is ON, please connect the host computer running TRiLOGI to
the PLC and run the “On-Line Monitoring” program. You will be informed
of the reason that caused the PAUSE condition. Except for condition i)
and iv), you can release the PLC from the PAUSE state by pressing the
<P> key during “On-Line Monitoring”. If the PLC’s EEPROM is corrupted
then you must re-transfer your program to the PLC again.

c) Run Error (Red LED)

When this indicator turns ON it shows that a run-time error had occurred
during execution of a TBASIC command. The system will halt at the CusFn
where the error took place. If the programmer now executes the “On-Line
Monitoring” command in TRiLOGI, the cause of the run-time error and the
CusFn where the error occurred will be reported on TRiLOGI screen.

TBASIC simulator captures many possible run-time errors including out-of-
range values, but in T100M+ PLC only a few most important run-time
errors are reported. The remainings are ignored. The following are the few
run-time errors that will be reported in T100M+ PLC:

I) Divide By Zero
ii) FOR-NEXT loop with STEP = 0!
iii) Call Stack Overflow! Circular CALL suspected!
iv) Illegal Opcode - Please inform manufacturer!
v) System Variable Index out-of-range: This is normally caused by

using an unavailable subscript. E.g. DM[0], INPUT[-1], DM[5000],
etc. Check the subscript value especially if it contains a variable
(e.g. DM[X], if X=0 this will lead to a runtime error).

All run-time errors should be identified and corrected before proceeding
any further.

1.12 Internal Relays, Timers & Counters, etc.

All T100M+ PLCs support up to 512 internal relays, 64 timers (any one or all
can be configured as “High Speed” timers), 64 counters, 8 clock sources of
various periods: 0.01s, 0.02s, 0.05s, 0.1s, 0.2s, 0.5s, 1 sec and 1 minute.

T100M+ also supports 8 sequencers of 32 steps each. A sequencer is a
highly convenient feature for programming machines or processes that
operate in fixed sequences. Any one or all of the first 8 counters can be
used as step counters for the sequencers that correspond to sequencers
"Seq1" to "Seq8". Each step of the sequencer (up to 31) can be used as a
contact to the ladder diagram as "SeqN:XX" where N = sequencers # 1 to
8. XX = Step # 0 - 31. Please refer to TRiLOGI Programmer’s Reference for
detailed descriptions of the built-in sequencers.

Chapter 2 Operating Procedure

2-1

2.1 Programming

The T100MD+ controller is programmed using the software DOS TRiLOGI
Version 4.X or Internet TRiLOGI 5.x which run on an IBM compatible PC.
This is a full-screen ladder logic editor, compiler and simulator software.
TRiLOGI is a software package that provides a powerful programming
and debugging environment for programming using the powerful
ladder+TBASIC programming language. Please refer to the Internet
TRiLOGI Programmer’s Manual for details.

2.2 Simulation

A great feature unique to the TRiLOGI development environment is the
built-in simulator. With the simulator, you can interact with your program
by simulating the input conditions using your mouse or keyboard and
examine the status and present values of the outputs, relays, timers and
counters on screen immediately. Most Custom functions written in
TBASIC can also be simulated and all the variables can be examined
readily on the simulator screen.

The simulator does not require any physical connection to the target
PLC, and thus offers the most effective way of testing and debugging
your ladder logic program prior to the installation of the hardware.
Programming and debugging time can be greatly reduced if you
make good use of the simulator feature to eliminate as many logic
errors as possible before testing the program on the actual hardware. It
also helps to reduce the chances of costly damage to the machine
due to programming errors.

2.3 Transferring Program to the PLC

Once you are satisfied with the TRiLOGI-simulated scenarios, return to
the ladder logic editor by pressing the <ESC> key. To transfer the
ladder program to T100MD, first connect the PC’s serial port to COMM1
of the PLC and then turn on its power supply. You may press <Ctrl-T> on
the keyboard or open the "Controller" pull-down menu and select item
"Program Transfer". TRiLOGI will query the target controller to obtain its
maximum number of inputs, outputs, etc. TRiLOGI will recompile the
ladder program to ensure that these limits are not violated. When
compilation is successful, the compiled code will be transferred to the
T100MD PLC in within seconds.

T100MD+ & MX+ PLC Chapter 2 : Operating Procedure

2-2

After the program has been successfully transferred, you will be
prompted to indicate if you wish to clear all outputs, relays, timers,
counters and all the internal system variables to "OFF". A program that is
successfully transferred will be executed at once. If you do not want the
program to execute immediately, you may turn ON DIP switch SW1-4
before transferring the program, and then turn it OFF when you want the
program to run.

If errors occur during program downloading and communication is
aborted, the CPU will not execute the partially transmitted program to
forestall undesirable consequences. If everything goes well, you may
return to the editor by pressing any key.

Transfer Protection PasswordTransfer Protection Password

The DOS version TRiLOGI 4.1x allows the user to define a Transfer
protection password of between 1 to 6 characters by selecting the "Set
Password" item from the "Target Access" menu. Once a password has
been defined, you will be prompted to enter the password whenever
you want to transfer a program to the PLC. Program transfer will be
aborted if incorrect password is entered. This is to prevent alteration of
the PLC program by unauthorized personnel.

If you have forgotten the password, then the only way to re-program the
PLC is to first delete the password using the “Delete Password and Clear
Program” command in the “Target Access” menu. The program in the
PLC will be deleted when this command is executed. You have to
download the new program into the PLC for it to operate.

* The password security against unauthorized programming is not supported

on Internet TRiLOGI Version 5.x. There are already two levels of password
structure on Internet TRiLOGI – one is defined on the TLServer and the other
is defined by executing the SETPASSWORD TBASIC command. We feel that
adding one more password layer to the whole PLC programming
environment will only serve to confuse the users. We have thus decided to
omit this from the Internet TRiLOGI Version 5.x. However, if you attempt to
use Version 5.x to transfer program to a PLC previously protected by
TL41.EXE, TRiLOGI Version 5.x will still prompt you for a “Prog. Transfer
password”. You will need to enter the authenticated password in order to
proceed any further. In other words, you can still use TL41.EXE to manage
(define or delete) the Transfer Protection password for the PLC.

2.4 Errors and Problems

Any error in the source file detected during compilation will abort the
program transfer process immediately. The cause of the first error will be

T100MD+ & MX+ PLC Chapter 2 : Operating Procedure

2-3

reported on screen, although you should never encounter this problem
if you had simulated the program successfully in TRiLOGI. This is because
TRiLOGI's ease of programming reduces the possibility of errors to a
minimum, and any error would have been detected and rectified
before any simulation can take place.

PLC Program length is measured in (16-bit) “words”. Up to 6016 words
may be programmed into a T100MD+ PLC (expandable to 8190 words
with an optional hardware module M2018P, available from the
manufacturer).

If your program exceeds the maximum allowable program size after
compilation, the compiler will record this as an error and the
downloading process will be aborted. If this happens, you need to
simplify your program to optimize the use of program memory.

2.5 On-Line Monitoring & Control

TRiLOGI allows direct control of the PLC operation from within the
program. You can enter this mode by selecting the "On-Line Monitoring"
command from the "Controller" main menu, or by pressing the "Ctrl-M"
hot-key. A "Full Screen On-Line Monitoring" screen will appear. The
following are what may be done in this mode:

2.5.1 2.5.1 Monitoring PLC’s I/O Logic StatesMonitoring PLC’s I/O Logic States

TRiLOGI continuously monitors the I/O logic states and present
values of the timers and counters of the controller and displays
them on screen. You may use the mouse to click on the scroll
bar of each I/O column to scroll up and down to view elements
outside of the window. The on/off logic state of each I/O element
is clearly visible on screen.

2.5.22.5.2 Viewing and Modifying PLC’s Internal VariablesViewing and Modifying PLC’s Internal Variables

If you click on the “View” button while you are within the “Full
Screen On-Line Monitoring” screen, a “View Variables” window will
be opened. You can examine the values of all the 26 integer
variables A to Z, string variables A$ to Z$, Data Memory DM[1] to
DM[4000] and other special internal variables such as ADC, DAC,
PWM and the Real-Time-Clock. The values displayed in this
window reflect the actual values of these variables in real time.
The numbers are usually displayed in decimal form, but if you
press the <H> key it will change into hexadecimal form. Pressing
the <D> key will change it back to decimal mode.

T100MD+ & MX+ PLC Chapter 2 : Operating Procedure

2-4

You can also examine the values of other system variables such
INPUT[], OUTPUT[], EMINT[] etc. by right scrolling until you reach
the last window. If you wish to modify the content of any variable,
simply press the <E> key (as for “Edit”) and you can enter the
variable name followed by the “=“ sign and the value. The
entered value for the variable will be immediately updated into
the PLC.

2.5.32.5.3 Force Setting/Resetting I/O BitsForce Setting/Resetting I/O Bits

While in TRiLOGI 5.x Full Screen on-Line Monitoring window, you
can use left mouse button to click on any I/O bit shown on the
screen. The selected I/O bit of the controller will be forced to ON
by TRiLOGI using host link commands. When you release the left
mouse button the affected I/O bit will be turned OFF. You can
also force-toggle the I/O bit using the right mouse button.

If the selected bit is a physical input bit or has been assigned to
an output coil controlled by the ladder diagram, it will only be
affected for one-scan time. After that the controller will refresh its
input/output according to the actual states of the physical inputs
and outputs determined by the outcome of the ladder program.
This is sometimes useful during program testing or debugging for
temporarily overriding an I/O that does not respond as predicted.

Please see the Internet TRiLOGI Programmer’s Reference for
more details.

2.5.42.5.4 Suspending PLC's Ladder Program Suspending PLC's Ladder Program

You can suspend the operation of the controller at any time by
pressing the <P> key or by clicking the [Pause] button. A
warning message will appear and the PAUSE button will be
displayed in RED color. When the controller is suspended, its
program will not be executed until it is resumed by pressing the
<P> key again. At this time you can force set or reset any relay
or output bits. This is convenient during programming or
debugging as you can control the output driver to bring any
physical component to any desired locations effortlessly.

2.6 Ladder Monitoring

When the “Full Screen Online Monitoring” window is opened, you can
also monitor the logic states of I/Os directly on the ladder logic editor
itself. TRiLOGI will continuously update the controller's I/O logic states

T100MD+ & MX+ PLC Chapter 2 : Operating Procedure

2-5

and display any "ON" I/O bit with highlighted label names on the ladder
diagram.

Note: On-Line Monitoring action is achieved by continuously sending
host link commands to the PLC and analyzing the response strings
immediately in order to update the screen. Since the controller must
spare some time to process the host-link commands, the overall scan
time will slow down during on-line monitoring. So please take precaution
that programs which require fast scan-time, such as counters fed by the
0.01s and 0.02s clock sources, may lose some accuracy during online
monitoring. Inputs based on interrupts, such as the High Speed Counters
however will not be affected.

2.7 Get PLC’s Hardware Info

You can find out the PLC's firmware version number, the maximum of
input, outputs, relays, timers and counters supported on this PLC as well
as the total amount of program memory available. The same info will
be displayed when you try to transfer a program to the PLC.

2.8 Set PLC’s Real Time Clock

This command lets you set the time and date of the PLC’s built-in Real
Timer Clock (RTC). When you execute this command, It will open up a
table pre-filled with time and date data based on your PC’s current
date and time, but you can change the date and time value before
updating to the PLC. The special bit “RTC.Err” will be turned OFF after you
have executed this command.

MXMX--RTC ModuleRTC Module

When the PLC power is turned off, the built-in RTC will stop operating and
the date and time setting will be lost. When the power is re-applied to
the PLC, the RTC must be reset to some factory pre-determined date
and time values. In order to maintain the clock settings (non-volatility),
you can purchase the MX-RTC option. The MX-RTC module is a special
socket attached to the T100MD’s data RAM and provides a Lithium
battery-backed real time clock that continues to run even when the PLC
power is turned off. The “Set PLC’s Real Time Clock” command will also
set the date and time within the MX-RTC module if installed.

The MX-RTC module also maintains the contents of all the I/Os and
internal variables stored in the PLC’s data RAM in the event of power lost.
The DIP-switch SW1-1 can be set to avoid clearing of the variables when

T100MD+ & MX+ PLC Chapter 2 : Operating Procedure

2-6

power on (please refer to section 1.10 for details). This may be useful for
control systems that must maintain the contents of all data in the event
of a power failure.

2.9 Trouble-Shooting Communication Errors

If you keep encountering the "Communication Error" message when you
execute any command under the “Controller” menu, the following are
some possible causes:

1) The T100MD is not connected to the cable.
2) The host computer COM port is not connected to the cable.
3) Wrong COM port number is specified for the PC. Try another one.
4) Power to PLC is not turned on or an inadequate power supply has

been used. Make sure that the CPU power supply is within
specifications. Try another power supply.

5) Faulty serial port of host computer. Try another computer with a
good working COM port.

6) Faulty serial cable. Try another cable.
7) Faulty PLC. Return the unit to authorized dealer for servicing.

Communication Errors After Transferring A User Program

If you have been able to communicate with the PLC, but all a sudden,
after transferring a new TRiLOGI program into the PLC you keep
encountering the "Communication Error" messages, then the most likely
causes are:

1) Your program has changed the serial port setting to other than 8
data bit, 1 stop bit and no parity. Or you have change the baud
rate to values not supported by TLServer.

2) You are executing PRINT #, OUTCOMM, NETCMD$, READMODBUS, or
WRITEMODBUS on the same COMM port which TRiLOGI connects to.
TRiLOGI reports a comm error when it receives data that is different
from the expected response from the slave.

To fix the above situation, turn ON DIP Switch SW1-4 and reset the PLC.
change the Baud rate setting in TLServer to 9600 and attempt to
communicate with the PLC again. If you are able to communicate with
the PLC then the problem must definitely be caused by some offending
codes in your TRiLOGI program. Correct the error and re-transfer the
program before turning OFF DIP SW1-4 and change TLServer baud back
to default 38400 bps.

Chapter 3 Host Communication

3-1

While a T100MD+ or T100MX+ PLC is running, a host computer or another
T100M+ PLC (this abbreviation is used to refer to both the T100MD+ and
T100MX+ in this manual) may send ASCII string commands to it to read or
write to its inputs, outputs, relays, timers, counters and all the internal
variables. These ASCII commands are known as the "host-link commands"
and are to be serially transmitted (via RS232C or RS485 port) to and from
the controller. The default serial port settings of T100M+ PLC for host-link
communication are: 38400 baud, 8 data bit, 1 stop bit, no parity. The baud
rate and the communication format may be changed using the “SetBAUD”
TBASIC command described in the Programmer’s Reference Part II -
TBASIC.

Multiple Communication Protocols

The competent T100M+ family of PLCs supports many different
communication protocols to allow maximum application flexibility. In
addition to its own native set of communication protocols, the T100M+
PLC also understands and speaks the following protocols:

1. *MODBUS ASCII mode compatible communication protocol.

2. *MODBUS RTU mode compatible communication protocol.
(For Rev D board with Firmware revision r32 and above only)

3. *OMRON Host Link Commands for the C20H PLC family.

*Note: all trademarks belong to their respective owners.

The native host link command protocol will be described in detail in this
chapter as well as in Chapter 4. The MODBUS and OMRON compatible
protocols will be described in Chapter 5.

Native Mode Communication Protocols

When a T100M+ PLC receives a native host-link command from COMM1
or COMM3, it will automatically send a response string corresponding to
the command. This operation is totally transparent to the user and need
not be handled by the user’s program.

All T100M+ PLCs support both point-to-point (one-to-one) and multi-point
(one-to-many) communication protocols. Each protocol has a different
command structure as described below:

3.1 POINT-TO-POINT COMMUNICATION

 In a point-to-point communication system, the host computer's
RS232C serial port is connected to the PLC’s COMM1. At any one

T100MD+ & MX+ PLC Chapter 3 : Host Communication

3-2

time, only one controller may be connected to the host computer.
The host-link commands do not need to specify any controller ID
code and are therefore of simpler format, as shown below:

 Command/Response Block Format (Point to Point)Command/Response Block Format (Point to Point)

 x x *

 Header Data Terminator

Each command block starts with a two-byte ASCII character
header, followed by a number of ASCII data and ends with a
terminator which comprises an '*' character and a carriage return
(ASCII value = 13

10
). The header denotes the purpose of the

command. For example, RI for Read Input, WO for Write Output,
etc. The data is usually the hexadecimal representation of numeric
data. Each byte of binary data is represented by two ASCII
characters (00 to FF).

To begin a communication session, the host computer must first send
one byte of ASCII character: Ctrl-E (=05Hex) via its serial port to the
controller. This informs the controller that the host computer wishes to
send a (point-to-point) host-link command to it. Thereafter, the host
computer must wait to receive an echo of the Ctrl-E character from
the controller. Reception of the echoed Ctrl-E character indicates
that the controller is ready to respond to the command from the host
computer. At this moment, the host computer must immediately
send the command block to the controller and then wait to receive
the response block from the controller. The entire communication
session is depicted in Figure 2-1.

After the controller has received the command, it will send a
response block back to the host computer and this completes the
communication session. If the controller accepts the command, the
response block will start with the same header as the command,
followed by whatever information that has been requested by the
command and the terminator.

T100MD+ & MX+ PLC Chapter 3 : Host Communication

3-3

Host Computer The M-series PLC

Send Ctrl-E
(05H) and wait
for echo

Send Command
string to controller
Wait for response

Ready to process
command: return
Ctrl-E (05H)

Execute command.
Return Response
string to host

Accept Response
Check for errors

Figure 3.1

If an unknown command is received or if the command is illegal
(such as access to an unavailable output or relay channel), the
following error responseerror response will be received:

Error Response FormatError Response Format

E R *

The host computer program should always check the returned
response for possibilities of errors in the command and take
necessary actions.

3.2 MULTI-POINT COMMUNICATION SYSTEM

 In this system, one host computer may be connected to either a

single T100M+ (via either RS232 or RS485) or multiple T100M+ PLCs
on an RS485 network.

T100MD+ & MX+ PLC Chapter 3 : Host Communication

3-4

3.2.1 3.2.1 RS485 Network Interface HardwareRS485 Network Interface Hardware

The built-in RS-485 interface allows the T100M+ controllers to
be networked together using very low cost twisted-pair cables.
Standard RS-485 allows up to 32 controllers (including the host
computer node) to be networked together. When fitted with 1/8
power RS485 driver such as the 75HVD3082, up to 256 devices
can be connected together. The twisted-pair cable goes from
node to node in a daisy chain fashion and should be
terminated by a 120 ohm resistor as shown below.

Host Computer with
RS - 485 or

T100M D+

Twisted - pair RS485 network cable

120 Ω

Terminating
resistor

560

560

+5V

0V

+
_

+ + + + _ _ _ _

RS485
T100MX +
RS485

T28H - Relay
RS485

 M - series PLC

RS485

Figure 3.2

Note that the two wires are not interchangeable so they must
be wired the same way to each controller. The maximum wire
length should not be more than 1200 meters (4000 feet). RS-
485 uses balanced or differential drivers and receivers, this
means that the logic state of the transmitted signal depends
on the differential voltage between the two wires and not on
the voltage with respect to a common ground.

As there will be times when no transmitters are active (which
leaves the wires in "floating" state), it is a good practice to
ensure that the RS-485 receivers will indicate to the CPUs that
there is no data to receive. In order to do this, we should hold
the twisted pair in the logic '1' state by applying a differential
bias to the lines using a pair of 560Ω to 1KΩ biasing resistors
connected to a +9V (at least +5V) and 0V supply as shown in
Figure 3-2. Otherwise, random noise on the pair could be
falsely interpreted as data.

The two biasing resistors are necessary to ensure robust data
communication in actual applications. Some RS485 converters
may already have biasing built-in so the biasing resistors may
not be needed. However, if the master is an M-series PLC then
you should use the biasing resistor to fix the logic states to a
known state. Although in lab environment the PLCs may be
able to communicate without the biasing resistors, their use is
strongly recommended for industrial applications.

T100MD+ & MX+ PLC Chapter 3 : Host Communication

3-5

3.2.2 3.2.2 Protection of RS485 InterfaceProtection of RS485 Interface

The simple, direct multi-drop wiring shown in Figure 3-2 will work
well if all the networked PLCs are in close proximity and they all
share a common power supply. They will even work for long
distance as long as no wiring error ever occurred. However, in
an industrial environment, the PLCs are most likely far apart and
they each may have their own power supply. Since processes
are often modified regularly and if one day somebody by
mistake shorts one of the PLC’s RS485 to high voltage, all the
PLCs connected to the same RS485 wiring will be fried
simultaneously. This can result in very costly down time for the
whole process, since all the PLCs connected to the network will
need to be repaired.

Hence, for networking over long distances and involving more
than a few PLCs, it is important to either strengthen or protect
the RS485 interface, as described below:

1) You can replace the standard RS485 driver (75176) on the

PLC by a fault-tolerant RS485 driver IC with part number
LT1785AIN8. This 8 pin IC is made by Linear Technology and
can withstand wrong voltages of up to +60V! As an added
bonus, the LT1785AIN8 is a 1/4 power RS485 driver, which
means up to 128 PLCs can be connected together.

Unfortunately this IC is much more expensive than 75176
and hence it is not provided as standard component on the
T100M+ PLC. You can purchase the IC from any major
electronic catalog company or contact sales@tri-plc.com
for a quotation of this IC driver.

2) When using non fault-tolerant RS485 driver such as SN75176

or SN75HVD3082, we strongly recommend the following
protection circuit to be added between every PLC’s RS485
and the twisted pair multi-drop network cable:

T100MD+ & MX+ PLC Chapter 3 : Host Communication

3-6

10 Ω 1/2 W 0.1A Fuses

RS485 Network

9V 1W
Zener

RS485

+

-

Power
0V

Ground the
Shield

24V

Figure 3.3

Note:

• As can be seen from the circuit, the two 9V Zener diodes
clamp the signal voltage to the PLC’s RS485 interface to
between +9V and - 0.7V. If the high voltage persists, the 0.1A
fuse will blow, effectively disconnecting the PLC from the
offending network voltage.

• Even if you choose to replace the RS485 driver by LT1785AIN8

IC instead of using the zener/fuse pair wiring, you should still
use shielded twisted pair cables as the multi-drop network
“backbone” and connect the shield to the 0V (DC ground)
power terminal of every PLC. The grounded shield then
provides a common ground reference for all the different
PLCs’ power supplies. Even though the RS485 network may still
work without a common ground reference because the signal
wire pair will somehow “pull” all the RS485 to some reference
point. Failure to provide a common ground is a potential Failure to provide a common ground is a potential
source of serious troublesource of serious trouble as signal wires with a floating
ground easily induce large voltage differences between
nodes when subjected to electromagnetic interference.
Hence for reliable operation it is important to provide the
common ground. A grounded shield also has the additional
advantage of shielding the electrical signals from EMI.

3.2.3 3.2.3 Single Master RS485 Networking FundamentalsSingle Master RS485 Networking Fundamentals

RS485 is a half-duplex network, i.e., the same two wires are
used for both transmission of the command and reception of
the response. Of course, at any one time, only one transmitter
may be active. The T100M+ PLCs implement master/slave
network protocol. The network requires a master controller,
which is typically a PC equipped with an RS485 interface. In the

T100MD+ & MX+ PLC Chapter 3 : Host Communication

3-7

case of a PC, you can purchase an RS-485 adapter card or an
RS232C-to-RS485 converter and connect it to the RS232C serial
port. A T100M+ PLC can also be programmed to act as the
master, it can communicate with other PLCs by executing the
“NETCMD$” function or the “READMODBUS” or the
“WRITEMODBUS” commands (the latter two are for
communicating using MODBUS protocols only).

Only the master can issue commands to the slave PLCs. To
transmit a command, the master controller must first enable its
RS-485 transmitter and then send a multi-point command to
the network of controllers. After the last stop bit has been sent,
the master controller must relinquish the RS485 bus by disabling
its RS485 transmitter and enabling its receiver. At this point the
master will wait for a response from the slave controller that is
being addressed. Since the command contains the ID of the
target controller, only the controller with the correct ID would
respond to the command by sending back a response string.
For the network to function properly, it is obvious that no two
nodes can have the same ID. You can use the “Setup Serial
Port” command in TLServer to set the ID for each M-series PLC.
You can also use the "IW” command to set the device ID. Also,
all nodes must be configured to the same baud rate and
communication format.

Also, care should be taken to ensure that the power supplies for
all the controllers are properly isolated from the main so that no
large ground potential differences exist between any
controllers on the network.

3.2.4 3.2.4 MultiMulti--Masters RS485 Networking FundamentalsMasters RS485 Networking Fundamentals

 Since any T100MD or T100MX is capable of sending out
network commands, the obvious question is whether multiple
masters are allowed on the RS485 network? It is possible to
have multiple masters on a single RS485 network provided the
issues of collision and arbitration are taken care of. There are
several means to achieve these objectives:

1) Multiple Access with Collision Detection

There is nothing to stop any PLC from sending out host-link
commands to other PLCs. However, If more than one PLC
simultaneously enables their transmitters and send out host-
link commands, then the signals will conflict and the
messages will be garbled up. If the network traffic is low,

T100MD+ & MX+ PLC Chapter 3 : Host Communication

3-8

then the solution may be a matter of having the master
check for the correct response after sending out a
command string. If there is error in the response string, the
master should back off the network for a short while (use
different timing for different PLCs) and then re-send the
command until a correct response string is obtained. This
scheme is similar to the CSMA/CD (Carrier Sensing Multiple
Access/Collision-Detection) commonly used in Ethernet.

Fortunately, the “NETCMD$” function of T100M+ PLC
automatically senses the RS485 lines until they are free
before sending out the command string to reduce the
chance of a collision. It also checks the integrity of the
response string for correct FCS (Frame Check Sequence)
characters before returning the string (Please refer to the
Programmer’s Reference for detail description of the
NETCMD$() function).

However, the program must still check the following items in
the response string to verify that the string returned from
NETCMD$() function indeed comes from the PLC that it
had talked to and not from another PLC (which tries to send
a command to someone else):

i) The ID is correct
ii) The header is identical to the command string
iii) The length of response string is correct.

Pros and Cons: This method does not incur any hardware
cost, but it requires careful programming and strict
checking of the response string and hence requires more
effort to program. It is also the least desirable if the network
traffic is moderately high as many collisions will occur and
there is danger of some undetected error being allowed to
pass through.

2) Token Awarding Scheme

A “token” is a software means of telling a PLC that it has
been given the right to temporarily act as the master. A
T100MD+ PLC or a host PC can serve as the token master.
An internal relay bit or a variable of the PLC can be defined
as the token. The token master will begin by giving the token
(i.e., by setting the token relay bit to ‘1’ or the token variable
to some fixed value) to the first PLC on the list. The PLC that
has the token can then send host-link commands to other
PLCs. When it has finished the job it can then send a
command to the token master to relinquish its token. If it is

T100MD+ & MX+ PLC Chapter 3 : Host Communication

3-9

based on a fixed timing scheme the master can assume
that the PLC will complete its job after a fixed time (say 0.1
seconds) and turn off its corresponding token relay bit.

The token master then passes the token to the next PLC on
the list and so on until the last PLC has relinquished its token,
and the token is passed back to the first PLC on the list
again. This way at any one time there will only be one active
network master (the one with the token) and hence there is
no danger of conflicting signals or garbled messages to
handle.

 Pros and Cons: This method also does not incur any
hardware cost, but it requires the programmer to draw up a
plan on what internal relay or variable to use as the token
and how the PLC can relinquish its token to the token
master. (It could be by fixed timing or by returning a
message to relinquish the token) It is a challenging job for
programmers unfamiliar with networking scheme, but with
some experimentation it can be achieved readily.

3) Rotating Master Signal

In this scheme we make use of the digital inputs of the
T100M+ PLCs to grant the PLC the right to act as the
network master. Lets call this input the “Be the Master” input.
We can use a low cost H-series PLC running a sequencer to
activate the “Be the Master” input line of each PLC one at a
time. Each PLC is given a fixed amount of time to be the
master (e.g. 0.1s each). Only when the “Be the Master”
input is ON can the T100M+ PLC start sending out host-link
commands to other PLCs. So at any one time there will only
be one master on the network and no conflict will occur as
a result.

Pros and Cons: This method is the easiest to program since
there is no need to handle the token with the token master
or perform extensive error check on the response string.
However, this method uses one input of each PLC and as
many outputs on the master-signal generator PLC as there
are PLC masters. It also requires wiring the PLCs to the
master-signal generator PLC and hence is the most costly
method of all.

T100MD+ & MX+ PLC Chapter 3 : Host Communication

3-10

3.2.5 3.2.5 Command/Response Block Format (MultiCommand/Response Block Format (Multi--point)point)

@ n n x x x x *

 Device ID Header Data FCS Terminator

Each command block starts with the character "@" and two-
byte hexadecimal representation of the controller's ID (00 to
FF), and ends with a two-byte "Frame Check Sequence" (FCS)
and the terminator. FCS is provided for detecting
communication errors in the serial bit-stream. If desired, the
command block may omit calculating the FCS simply by
putting the characters "00" in place of the FCS.

Note: we call “00” the “wildcard” FCS, which is available when
the PLC is in “auto protocol” mode. This is to facilitate easy
testing of multi-point protocol. However, the wildcard FCS is
disabled if the PLC has executed the SETPROTOCOL n, 5 to put
it’s COMM port n into pure native mode. In that case you will
have to supply the actual FCS to your command string.

Calculation of FCSCalculation of FCS

The FCS is 8-bit data represented by two ASCII characters (00
to FF). It is a result of Exclusive OR sequentially performed on
each character in the block, starting from @ in the device
number to the last character in the data. An example is as
follow:

@ 0 4 R V I A 4 8 *

 Device ID Header Data FCS

@ 0100 0000
 XOR
0 0011 0000
 XOR
4 0011 0100
 XOR
R 0101 0010
 XOR
V 0101 0110
 XOR
 I 0100 1001
 XOR
A 0100 0001

T100MD+ & MX+ PLC Chapter 3 : Host Communication

3-11

 0100 1000 = 48
16

Value 4816 is then converted to ASCII characters '4' (0011 0100)
and '8' (0011 1000) and placed in the FCS field.

FCS calculation program exampleFCS calculation program example

The following C function will compute and return the FCS for the
"string" passed to it.

unsigned char compute_FCS(unsigned char *string){
 unsigned char result;
 result = *string++; /*first byte of string*/
 while (*string)
 result ^= *string++; /* XOR operation */
 return (result);
}

A Visual Basic routine for FCS computation is included in the
source code of a sample communication program you can
download from:

 http://www.tri-plc.com/applications/SerialComm.zip.

3.2.63.2.6 Communication ProcedureCommunication Procedure

Unlike the point-to-point communication protocol, the host
computer must NOT send the CTRL-E character before sending
the command block. After the host computer has sent out the
multi-point host-link command block, only the controller with
the correct device ID will respond. Hence it is essential to
ensure that every controller on the RS485 network assumes a
different ID. Otherwise, contention may occur (i.e., two
controllers simultaneously sending data on the receiver bus,
resulting in garbage data being received by the host). On the
other hand, if none of the controller IDs match that specified in
the command block, then the host computer will receive no
response at all.

The PLC automatically recognizes the type of command
protocols (point-to-point or multi-point) sent by the host
computer and it will respond accordingly. If a multi-point
command is accepted by the controller, the response block
will start with a character '@', followed by its device ID and the
same header as the command. This will be followed by the
data requested by the command, a response block FCS and
the terminator.

T100MD+ & MX+ PLC Chapter 3 : Host Communication

3-12

Framing ErrorsFraming Errors

When the controller receives a multi-point host-link command
block, it computes the FCS of the command and compares it
with the FCS field received in the command block. If the two
do not match, then a "framing error" has occurred. The
controller will send the following Framing Error Response to the
host:

Framing Error RespFraming Error Response Block onse Block (Multi-point only)

@ x x F E x x *

 Device ID Header FCS Terminator

Command ErrorsCommand Errors

If an unknown command is received or if the command is illegal
(such as an attempt to access an unavailable channel), the
following error responseerror response will be received:

Error Response FormatError Response Format

@ x x E R x x *

 Device ID Header FCS Terminator

The host computer program should always check the returned
response for possibilities of errors in the command and take
necessary action.

3.3 SHOULD YOU USE POINT-TO-POINT OR MULTI-POINT

PROTOCOL?

Although at first the point-to-point protocol appears simpler in format
(having no ID and no FCS computation), the communication
procedure is actually more complex since it involves the need to
synchronize the two communicating devices by exchanging the
Control-E character. The lack of error checking also makes the
protocol less reliable especially in noisy environment.

In fact, the TLServer software as well as the Ethernet XServer will only
accept multi-point communication protocol from the client software
with the exception of the “IR*” command, which is needed to obtain
the ID of a PLC with unknown ID.

T100MD+ & MX+ PLC Chapter 3 : Host Communication

3-13

Hence, if you were to write your own communication program to talk
to the PLCs, we would strongly recommend using only the multi-point
protocol exclusively due to its simplicity and built-in error checking
capability.

3.4 TROUBLE-SHOOTING AN RS485 NETWORK

a) Single faulty device

If a single device on the RS485 network becomes inaccessible,
problems can be isolated to this particular device. Check for
loose or broken wiring or wrong DIP switch settings. Also double
check the device ID using the host-link command "IR*" sent via
the RS232C port of the PLC. If all attempts fail, either replace the
entire PLC or the SN75176 chip that handles the RS485 interfacing
and try again.

b) Multiple faulty devices

If all the PLCs are inaccessible by the host computer, it may
possibly be due to a faulty RS232C-to-RS485 converter at the PC.
If this is the case, disconnect the RS485 converter from the
network and check it using a single PLC. Replace the converter if
it is confirmed to be faulty. Next check the wire from the
converter to the beginning of the network. A broken wire here can
lead to the failure of the entire network.

Since an RS485 network links many PLCs together electrically and
in a daisy chain fashion, problems occurring along the RS485
network sometimes affect the operation of the entire network. For
example, a broken wire at the terminal of one node may mean
that all the PLCs connected after this node become inaccessible
by the master. If the RS485 interface of one of the PLCs has short-
circuited because of component failure, then the entire network
goes down with it too. This is because no other node is able to
assert proper signals on the two wires that are also common to
the shorted device.

Hence when trouble-shooting a faulty RS485 network, it may be
necessary to isolate all the PLCs from the network. Thereafter,
reconnect one PLC at a time to the network, starting from the
node nearest to the host computer. Use the TRiLOGI program to
check communication with each PLC until the faulty unit has
been identified.

T100MD+ & MX+ PLC Chapter 3 : Host Communication

3-14

This page is intentionally left blank.

Chapter 4 Command/Response Format

4-1

This chapter describes the detail formats of the command and response
blocks for all M-series PLC host link commands. Only the formats for the
point-to-point communication protocol are presented, but all these
commands are available to the multi-point protocol as well. To use a
command for multi-point system, simply add the device ID (@nn) before
the command header and the FCS at the end of the data (See Chapter 3
for detailed descriptions of multi-point communication command format).

4.1 Device ID Read

 Command Format

I R *

 Response Format

I R 161 160 *

 Device ID (00 to FF)

The device ID is to be used for multi-point communication protocol
where the host computer can selectively communicate with any
controller connected to a common RS485 bus (see Chapter 3 for
details). The ID has no effect for point-to-point communication.

The device ID is stored in the PLC's EEPROM and therefore will remain
with the controller until it is next changed.

4.2. Device ID Write

 Command Format

I W 161 160 *

 Device ID (00 to FF)

 Response Format

I W *

E.g. To set the PLC’s ID to 0A, send command string “IW0A*” to PLC.

4.3 Read Digital Input Channels

 Command Format

R I n n *

 8-bit Channel # (Hex)

T100MD+ & MX+ PLC Chapter 4: Command/Response Format

4-2

 Response Format

R I 161 160 *

 8-bit Data (Hex)

Definition of Input Channels

The following table shows the input numbers as defined in TRiLOGI's
Input entry table corresponding to the input channel number.

 Bit7 Input/Output Numbers Bit0

CH00: 8 7 6 5 4 3 2 1
CH01: 16 15 14 13 12 11 10 9
CH02: 24 23 22 21 20 19 18 17
CH03: 32 31 30 29 28 27 26 25
CH04: 40 39 38 37 36 35 34 33
CH05: 48 57 56 45 44 43 42 41
CH06: 56 55 54 53 52 51 50 49
CH07: 64 63 62 61 60 59 58 57
CH08: 72 71 70 69 68 67 66 65
CH09: 80 79 78 77 76 75 74 73
CH0A16: 88 87 86 85 84 83 82 81
CH0B16: 96 95 94 93 92 91 90 89
CH0C16: 104 103 102 101 100 99 98 97

….
CH1E16: 248 247 246 245 244 243 242 241
CH1F16: 256 255 254 253 252 251 250 249

The 8-bit inputs of each channel is represented by two bytes ASCII text
expression of its hexadecimal value. For example: if inputs 1 to 3 are
logic '0's, inputs 4 to 10 are logic '1's and all other inputs are logic '0's,
then if you send command “RI00*”, you will get response “RIF8*” (F816
=1111 10002).

4.4 Read Digital Output Channels

 Command Format
R O n n *

 8-bit Channel # (Hex)

 Response Format
R O 161 160 *

 8-bit data (Hex)

T100MD+ & MX+ PLC Chapter 4: Command/Response Format

4-3

Please refer to the Input/Output vs Channel Number table described
in the section “4.3. Read Digital Input Channels” for details.

4.5 Read Internal Relay Channels

 Command Format
R R n n *

 8-bit Channel # (Hex)

 Response Format
R R 161 160 *

 8-bit data (Hex)

Definition of Internal Relay Channel Numbers

All M-series PLC supports 512 internal relays, the channel definition of
the first 256 internal relays is the same as the inputs and the outputs.
The remaining relays and their assigned channels are shown in the
following table:
 bit7 Relay numbers bit0

CH2016: 264 263 262 261 260 259 258 257
CH2116: 272 271 270 269 268 267 266 265
CH2216: 280 279 278 277 276 275 274 273
CH2316: 288 287 286 285 284 283 282 281
CH2416: 296 295 294 293 292 291 290 289
CH2516: 304 303 302 301 300 299 298 297
CH2616: 312 311 310 309 308 307 306 305
CH2716: 320 319 318 317 316 315 314 313
CH2816: 328 327 326 325 324 323 322 321
CH2916: 336 335 334 333 332 331 330 329
CH2A16: 344 343 342 341 340 339 338 337
CH2B16: 352 351 350 349 348 347 346 345

CH3E16: 504 503 502 501 500 499 498 497
CH3F16: 512 511 510 509 508 507 506 505

4.6 Read Timer Contacts

Command Format
R T n n *

 8-bit Channel # (Hex)

 Response Format
R T 161 160 *

T100MD+ & MX+ PLC Chapter 4: Command/Response Format

4-4

 8-bit data in Hex

Definition of Timer-Contact Channel Numbers

A timer contact is a single bit of memory and 8 timer contacts are
grouped into one 8-bit channel similar to that of the inputs, outputs etc.

The following table shows the timer numbers defined in TRiLOGI's
Timer entry table and their corresponding channel numbers.

CH0: 8 7 6 5 4 3 2 1
CH1: 16 15 14 13 12 11 10 9
CH2: 24 23 22 21 20 19 18 17
CH3: 32 31 30 29 28 27 26 25
CH4: 40 39 38 37 36 35 34 33
CH5: 48 57 56 45 44 43 42 41
CH6: 56 55 54 53 52 51 50 49
CH7: 64 63 62 61 60 59 58 57

4.7 Read Counter Contacts

 Command Format
R C n n *

 8-bit channel # (Hex)

 Response Format
R C 161 160 *

 8-bit data in Hex

Definition of Counter-Contact Channel Numbers:

The 64 counter contacts are assigned channel # in exactly the same
way as the 64 timers. Please refer to last section :“4.6. Read Timer
Contacts” for details.

4.8 Read Timer Present Value (P.V.)

 Command Format
R M N n *

 nn: Timer1=00, Timer16=0F.... Timer64=3F

 Response Format
R M 103 102 101 100 *

 Timer present value in Decimal

T100MD+ & MX+ PLC Chapter 4: Command/Response Format

4-5

4.9 Read Timer Set Value (S.V.)

 Command Format

R m n n *

 nn: Timer1=00, Timer16=0F.... Timer64=3F

 Response Format

R m 103 102 101 100 *

 Timer Set Value in Decimal

The Set Value (S.V.) of the specified timer is returned in decimal form
as four byte ASCII text characters from 0000 to 9999. Note that this
command header contains small letter “m”small letter “m” instead of “M” in the
“RM” command.

4.10 Read Counter Present Value (P.V.)

 Command Format

R U n n *

 nn: Counter1=00, Counter16=0F.... Counter64=3F

 Response Format

R U 103 102 101 100 *

 Counter present value in Decimal

The Present Value of the specified counter is returned in decimal form
as four byte ASCII text characters from 0000 to 9999.

4.11 Read Counter Set Value (S.V.)

 Command Format

R u n n *

 nn: Counter1=00, Counter16=0F.... Counter64=3F

 Response Format

R u 103 102 101 100 *

 Counter Set Value in Decimal

The Set Value of the specified counter is returned in decimal form as
four byte ASCII text characters from 0000 to 9999. Note that this
header contains small letter “u”small letter “u” instead of “U” in the “RU” command.

T100MD+ & MX+ PLC Chapter 4: Command/Response Format

4-6

4.12 Read Variable - Integers (A to Z)

 Command Format

R V I alphabet *

 A,B.C....Z

 Response Format

R V I 167 166 165 164 163 162 161 160 *

 8 Hexadecimal Digit for 32-bit integer

E.g. To read the value of the variable “K”, send host-link command
“RVIK*”. If variable K contains the value 12345610 (=1E24016),
PLC will send the response string as “RVI0001E240*”.

4.13 Read Variable - Strings (A$ to Z$)

 Command Format

R V $ alphabet *

 A,B.C....Z

 Response Format

R V $ a a a a a a *

 ASCII characters of the string (variable length)

E.g. To read the value of the string variable “M$”, send host-link
command “RV$M*”. If variable M$ contains the string “Hello
World”, the PLC will send the response string as “RV$Hello
World*”.

4.14 Read Variable - Data Memory (DM[1] to DM[4000])

 Command Format

R V D 163 162 161 160 *

 0001 to 0FA0 (400010)

 Response Format

R V D 163 162 161 160 *

 4 Hexadecimal Digit for 16-bit integer

E.g. To read the value of DM[3600], send host-link command
“RVD0E10*”. If variable DM[3600] contains the value 1234510
(=303916), PLC will send the response string as “RVD3039*”.

T100MD+ & MX+ PLC Chapter 4: Command/Response Format

4-7

4.15 Read Variable - System Variables

 This command allows you to read all the M-series PLC’s 16-bit
system variables such as the inputs[], outputs[], relays[], counters[],
timers[], timers’ P.V., counters’ P.V., CLK[] and DATE[]. Although
inputs, outputs etc. are also accessible via the “RI”, “RO”, “RR”...
commands, the RVS command can access them as 16-bit words
instead of as 8-bit bytes in those commands. For the 32-bit system
variable HSCPV[], use the “RVH” command described in the next
section to access it. It may be more conventional for some SCADA
software driver to use a single header command “RVS” to access all
the I/O, varying only the “type” number to access different I/O types.

 The RVS command also can be used to access the internal

variables used to store ADC, DAC and PWM values obtained during
the latest execution of the ADC(), setDAC or setPWM statement.
These are however not system variables in TBASIC sense. E.g. it is
illegal to use ADC[2] to access the ADC channel #2 in TBASIC (you
have to use the ADC(2) function instead). An 8-bit hexadecimal
number is used to denote the “type” of system variable, as shown in
the following table:

System
Variable

type System
Variable

type

input[] 01 clk[] 08
output[] 02 date[] 09
relay[] 03 - 0A
timer[] 04 ADC* 0B
ctr[] 05 DAC* 0C

timerPV[] 06 PWM* 0D
ctrPV[] 07 * Not a system variable

in TBASIC

 Command Format

R V S n n 161 160 *

 type Index

type (01 to 0D) - denote the type of system variable to access,
index (01 to 1F) - index into the array, starting from 01.

 Response Format

R V S 163 162 161 160 *

 4 Hexadecimal Digit for 16-bit integer

T100MD+ & MX+ PLC Chapter 4: Command/Response Format

4-8

Example: To read the value of DATE[2] (which represents the month
of the RTC), send command “RVS0902*” and if the PLC
responds with “RVS0005” it means the month is May.

4.16 Read Variable - High Speed Counter HSCPV[]

 Command Format

R V H n *

 Channel: 1 or 2

 Response Format

R V H 167 166 165 164 163 162 161 160 *

 8 Hexadecimal Digit for 32-bit integer

E.g. To read the value of HSCPV[2], send hostlink command
“RVH2*”. If variable HSCPV[2] contains the value 12345610
(=1E24016), PLC will send the response string as
“RVH0001E240*”.

4.17 Write Inputs

 Command Format

W I n n 161 160 *

 Channel # Data
 (00 to 0F)

 Response Format

W I *

4.18 Write Outputs

 Command Format

W O n n 161 160 *

 Channel # Data
 (00 to 0F)

 Response Format

W O *

T100MD+ & MX+ PLC Chapter 4: Command/Response Format

4-9

4.19 Write Relays

 Command Format

W R n n 161 160 *

 Channel # Data
 Response Format

W R *

4.20 Write Timer-contacts

 Command Format

W T n n 161 160 *

 Channel # Data
 (00 to 07)

 Response Format

W T *

4.21 Write Counter-contacts

 Command Format

W C n n 161 160 *

 Channel # Data
 (00 to 07)

 Response Format

W C *

4.22 Write Timer Present Value (P.V.)

 Command Format

W M n n 103 102 101 100 *

 Timer1=00, New timer PV

 Timer64=3F (Hex)

T100MD+ & MX+ PLC Chapter 4: Command/Response Format

4-10

 Response Format

W M *

Please note that the timer number starts from 00 which represent
timer #1, 01 represents timer #2... and so on.

4.23 Write Timer Set Value (S.V.)

 Command Format

W m n n 103 102 101 100 *

 Timer1=00, New timer SV

 Timer64=3F (Hex)

 Response Format

W m *

Note: the 2nd character is a lower case “m” instead of the upper case
“M” of “WM” command.

4.24 Write Counter Present Value (P.V.)

 Command Format

W U n n 103 102 101 100 *

 Counter1=00, New PV

 Counter64=3F (Hex)

 Response Format

W U *

4.25 Write Counter Set Value (S.V.)

 Command Format

W u n n 103 102 101 100 *

 Counter1=00, New Counter SV

 Counter64=3F (Hex)

T100MD+ & MX+ PLC Chapter 4: Command/Response Format

4-11

 Response Format

W u *

Note:Note: the 2nd character is a lower case “u” instead of the upper case

“U” of the “WU” command.

4.26 Write Variable - Integers (A to Z)

 Command Format

W V I alphabet 167 166 165 164 163 162 161 160 *

 A,B.C....Z 8 Hexadecimal Digit for 32-bit integer

 Response Format

W V I *

E.g. To assign variable “K” to number 5678910(=0DD516), send
hostlink command “WVIK00000DD5*”.

4.27 Write Variable - Strings (A$ to Z$)

 Command Format

W V $ alphabet a a a a *

 A,B.C....Z ASCII characters of the
 string (variable length)

Response Format

W V $ *

E.g. To assign the string “T100MD+ Super PLC” to the string
variable P$, send hostlink command “WV$PT100MD+ Super
PLC*”.

4.28 Write Variable - Data Memory (DM[1] to DM[4000])

 Command Format

W V D 163 162 161 160 163 162 161 160 *

 16-bit Index to array 16-bit Integer Data
 0001 to 0FA0 (400010)

T100MD+ & MX+ PLC Chapter 4: Command/Response Format

4-12

 Response Format

W V D *

E.g. To write the value 123410 (=4D216)to DM[1000], send hostlink
command “WVD03E804D2*”. (100010 = 3E816)

4.29 Write Variable - System Variables

System
Variable

type System
Variable

type

input[] 01 clk[] 08
output[] 02 date[] 09
relay[] 03 - 0A
timer[] 04 ADC* 0B
ctr[] 05 DAC* 0C

timerPV[] 06 PWM* 0D
ctrPV[] 07 * Not a system variable in TBASIC

 Command Format

W V S n n 161 160 163 162 161 160 *

 type Index 16-bit Integer Data

type (01 to 0D) - denote the type of system variable to access,
index (01 to 1F) - index into the array, starting from 01.

 Response Format

W V S *

Example: To set clk[1] (which represents the hour of the RTC) to 14,

send the command “WVS0801000E*” to the PLC.

4.30 Write Variable - High Speed Counter HSCPV[]

 Command Format

W V H n 167 166 165 164 163 162 161 160 *

 1 or 2 8 Hexadecimal Digit for 32-bit integer

 Response Format

W V H *

E.g. To clear the value of HSCPV[2], send hostlink command
“WVH200000000*”.

T100MD+ & MX+ PLC Chapter 4: Command/Response Format

4-13

4.31 Update Real Time Clock Module

 Command Format

W r *

 Response Format
W r *

If the battery-backed MX-RTC module is installed, this command
forces he PLC to write the values of the TIME[] and DATE[]
variables into the RTC module. This command will be ignored by
a PLC without the RTC module.

4.32 Halting the PLC

 Command Format

C 2 *

 Response Format
C 2 *

When the PLC receives this command, it temporarily halts the
execution of the PLC's ladder program after the current scan.
However, the PLC continues to scan the I/Os and processes host link
commands sent to it and will report the current I/O data and internal
variables to the host computer.

4.33 Resume PLC Operation

 Command Format
C 1 *

 Response Format

C 1 *

When the PLC receives this command, it will resume execution of
the ladder program if it has been halted previously by the "C2"
command. Otherwise, this command has no effect.

T100MD+ & MX+ PLC Chapter 4: Command/Response Format

4-14

Important Note

The following Host Link Commands: RA, RXI, RX$, WA, WXI, WX$ and
Wb are available only on newest M-series PLCs installed with CPU
firmware version r47 & above. You can check your CPU firmware version
by using the “Controller-> Get PLC Hardware Info” on the TRiLOGI
software.

4.34 Read Analog Input (r47 Firmware Only)

This command forces the PLC to refresh the value of its ADC data at
the analog channel before returning its value in the response string
(i.e. no need for PLC to execute ADC(n) function to refresh the
analog input)

 Command Format

R A n n c c *

 Starting Analog Channel count
 Channel # (01-08h) (01 to 08h)

 Response Format

R A 163 162 161 160 … 162 161 160 *

 Starting channel … Ending channel
 16-bit Data (Hex) 16-bit Data (Hex)

E.g. To read 4 channels of Analog starting from Ch #2, Send
“RA0204*”. The response string will contain 4 sets of data for
channel 2, 3, 4 and 5.

4.35 Read EEPROM Integer Data (r47 Firmware Only)

 Command Format

R X I n n n n c c *

 EEPROM starting Word Count
 Address (Hex) (01 to 20h)

 Response Format

R X I 163 162 161 160 … 162 161 160 *

 1st EEPROM Integer … Last EEPROM
 16-bit Data (Hex) 16-bit Data (Hex)

T100MD+ & MX+ PLC Chapter 4: Command/Response Format

4-15

Maximum allowable word count per command is 32 (01 to 20 Hex).
If “count” is > 32, only the first 32 words will be returned.

E.g. To read the 10 words of EEPROM data starting from address

100, send host-link command “RXI00640A*”. The response
string will contain 10 sets of 16-bit data (4 ASCII hex digit per
set).

4.36 Read EEPROM String Data (r47 Firmware Only)

 Command Format

R X $ n n n n *

 EEPROM String starting
 Address (Hex)

 Response Format

R X $ a a a a a a *

E.g. To read the string data stored at EEPROM address 10, send
host-link command “RX$000A*”. The response string will
contain string data stored in the EEPROM (maximum 40
characters).

4.37 Write Analog Output (r47 Firmware Only)

Upon receiving this command, the PLC updates the value of its DAC
data at the analog output channel (i.e. no need for PLC to execute
SETDAC to update the analog output) .

 Command Format

W A n n c c 163 162 161 160 … 161 160 *

 Starting Analog channel DAC output data DAC output data
 channel # (01-02h) count for 1st channel for subsequent ch

 Response Format

W A c c *

 channel count
 (Hex)

T100MD+ & MX+ PLC Chapter 4: Command/Response Format

4-16

4.38 Write EEPROM Integer Data (r47 Firmware Only)

Command Format

W X I n n n n c c 163 162 161 160 …

 Starting EEPROM count Hex data for starting
 Address (0001-xxxx) (01-20h) EEPROM address

163 162 161 160 … 161 160 *

 data for subsequent
 EEPROM addresses

 Response Format

W X I *

Maximum allowable word count per command is 32 (01 to 20 Hex).

4.39 WRITE EEPROM String Data (r47 Firmware Only)

 Command Format

W X $ n n n n a a a *

 EEPROM String ASCII characters
 Address (Hex) (max. 40 characters)

 Response Format

W X $ *

E.g. To write the string data “Hello TRi” at EEPROM String address 12,
send host-link command “RX$000CHello TRi*”.

4.40 Force Set/Clear Single I/O Bit (r47 Firmware Only)

This new “Wbnnnnxx” command allows you to change a single I/O bit
on the PLC. You can force set or clear any single input, output, relay,
timer or counter bit. This has advantage over other write commands
such as WI, WO, etc that affects the entire group of 8 or 16-bits
organized into “channels”.

T100MD+ & MX+ PLC Chapter 4: Command/Response Format

4-17

Command Format

W b n n n n x x *

 I/O Bit address 00 – Clear I/O bit (OFF)
 (Hex) FF – SET I/O bit (ON)

Response Format

W b *

I/O Type Bit address nnnn (Hex)

Input #1 to #256 0000 to 00FF

Output #1 to #256 0100 to 01FF

Timer #1 to #256 0200 to 02FF

Counter #1 to #256 0300 to 03FF

Relay #1 to #256 0400 to 04FF

Relay #257 to #512 0500 to 05FF

E.g. to force output 1 to ON, send “Wb0100FF*”. To turn it OFF, send
“Wb010000*”

4.41 Testing of Host Link Commands

You can try out all the hostlink commands using the TLServer’s “Serial
Communication Setup”. However, the TLServer is designed to
accept only multi-point protocol except the “IR*” command (which
is necessary to obtain the device ID from the PLC). So you have to
enter all your host link commands in multi-point format.

Since the multi-point protocol requires an FCS (frame check
sequence) character to be appended to the end of the command
string, you may be able to get around it by using the “wildcard” FCS
“00” in place of the actual FCS. E.g. To read input channel 02 from
PLC with ID = 01, you can enter the command string as
“@01RI0200*”.

For TLServer version 2.1 and above, there is an “FCS” button that let
you compute the actual FCS for the string in the command string
text field. You can then use the actual FCS with the command string
to completely test your command. E.g. If you type in the string
“@01RI02” in the command string (but do not press Enter), then
click on the “FCS” button, the FCS for this string will be computed
and shown as “FCS = 58”, as shown in the following figure:

T100MD+ & MX+ PLC Chapter 4: Command/Response Format

4-18

You now can enter the complete command string as
“@01RI0258*” and it will be accepted by TLServer. (Note: If the PLC
has executed a SETPROTOCOL n,5 to configure its serial port into
pure native mode, then wildcard FCS will not be accepted and you
must use the actual FCS with your command. The FCS button
makes it much easier than computation by hand).

If you have changed some data using the write command, then
activate On-Line Monitoring and examine the changes made using
the “View Variables” window.

4.42 Visual Basic Sample Program

To help users get started writing their own Visual Basic program to
communicate with the PLC, we have created a sample Visual
Basic program with full source code listing. Please visit the following
web page to download the visual basic sample program.

http://www.tri-plc.com/applications/VBsample.htm

T100MD+ & MX+ PLC Chapter 4: Command/Response Format

4-19

4.43 Inter-PLC Networking Using NETCMD$ Command

All M-series PLCs are able to send out host link commands to other
M-series or H-series PLCs using the built-in TBASIC function
NETCMD$(). This function accepts host link commands in multi-
point format and automatically computes the Frame Check
Sequence (FCS) characters, append them to the command string
and send out the whole command string together with the
terminators. The function then waits for a response string and
checks the integrity of the received response string for error. This
function returns a string only if a proper response string has been
received. Please refer to the TBASIC Reference for detailed
explanation of this command.

The NETCMD$() function therefore greatly simplifies the
programming tasks for handling networking between PLCs. The
programmer only needs to construct the correct command string
according to the formats described in this chapter, pass the
formatted string to the NETCMD$() function and then check for the
response string. An M-series PLC may use the NETCMD$ to map the
I/O of another PLC into its internal relays and use the other PLC as its
remote I/O.

There are two programming examples in your “TRILOGI\TL4”
directory which illustrate the use of NETCMD$() to map I/Os of slave
PLC to the master. Please study the two examples: “REMOTE-
H.PC4” and “REMOTE-M.PC4” carefully to understand the
mechanism of mapping I/Os between the PLC. The TRiLOGI
program “REMOTE-H.PC4” will work on both H- and M-series PLCs
as slaves , whereas the program “REMOTE-M.PC4” will only work
with M-series slave PLC. This is because the M-series host link
command set is a superset of H-series host link command set, and
this example uses the more efficient M-series host link commands
to read/write 16-bit data for networking between M-series PLC.

4.44 Inter PLC Networking Using MODBUS Protocols

The T100M+ PLCs may also pass data to each other using special
MODBUS commands which are even simpler to use than NETCMD$
but are restricted to accessing variables that are mapped into
MODBUS address structure. Please refer to the next chapter as well
as the TBASIC Reference manual for details on using the
READMODUS and WRITEMODBUS as well as the READMB2 and
WRITEMB2 commands.

T100MD+ & MX+ PLC Chapter 4: Command/Response Format

4-20

4.45 Using OMRON Host Link Commands

Since the T100M+ PLCs also support OMRON C20H Host Link
commands, which are very similar in construct to our multi-point
command/response format, you can also make use of OMRON
commands to supplement the native host link commands.

We will only discuss four of the OMRON host link commands “RR”,
“WR”, “RD” and “WD” in this section because these commands can
be used by users to read/write to multiple I/O registers and data
memory in a single command.

Note: Since the M-series native protocol command set typically
only supports read/write of single variable and data memory, if you
want to read/write multiple memory location in a single command
you can make use of these OMRON host link commands.

I. Read IR Registers

This command refers to Table 5.1 in Chapter 5 to map the PLC’s I/Os
to OMRON IR register space from IR0 to IR519

Command Format

@ d d R R n n n n c c c c

 Device ID Header IR Address (Dec) IR count (Hex)

f f *

 FCS

 Response Format

@ d d R R s s 163 162 161 160 … …

 Device ID Header Status 1st Data (Hex)
 00 – OK
 15 - Bad

163 162 161 160 f f *

 Last data FCS

 E.g. To read Timer PV #1 to #7 using this command, send:

 “@01RR012800074D*”

The PLC will send return a response “@01RR00xxxxyyyyzzzz….*”

T100MD+ & MX+ PLC Chapter 4: Command/Response Format

4-21

II. WRITE IR Registers

This command refers to Table 5.1 in Chapter 5 to map the PLC’s I/Os
to OMRON IR register space from IR000 to IR519

Command Format

@ d d W R n n n n 163 162 161 160 ….

 Device ID Header IR Start Addr(Dec) 1st data

163 162 161 160 f f *

 Last data FCS

 Response Format

@ d d W R s s f f *

 Device ID Header Status FCS
 00 – OK

 E.g. To Write to CtrPV #1 to #2 using this command, send:

 “@01WR0256xxxxyyyyff*”

where xxxx and yyyy are the hex values to be written to CtrPV 1 & 2.

III. Read Data Memory DM[1] to DM[4000]

Command Format

@ d d R D n n n n c c c c

 Device ID Header DM Address (Dec) DM count (Hex)

f f *

 FCS
 Response Format

@ d d R D s s 163 162 161 160 … …

 Device ID Header Status 1st Data (Hex)
 00 – OK

163 162 161 160 f f *

 Last data FCS

T100MD+ & MX+ PLC Chapter 4: Command/Response Format

4-22

 E.g. To read DM#112 to #130 (19 words), send:

 “@01RD0112001357*”

The PLC will send return a response “@01RD00xxxxyyyyzzzz…*”

IV. WRITE Data Memory DM[1] to DM[4000]

Command Format

@ d d W D n n n n 163 162 161 160 ….

 Device ID Header DM Start Addr(Dec) 1st data

163 162 161 160 f f *

 Last data FCS

 Response Format

@ d d W D s s f f *

 Device ID Header Status FCS
 00 – OK

 E.g. To Write to DM#1200 to #1201 using this command, send:

 “@01WD1200xxxxyyyyff*”

where xxxx and yyyy are the values to be written to DM[1200] &
DM[1201].

 Chapter 5 MODBUS /OMRON Protocols Support

5-1

The T100M+ PLC supports a subset of the OMRON and MODBUS (Both
ASCII and RTU modes are supported) compatible communication protocols
so that it can be easily linked to third-party control software/hardware
products such as SCADA software, touch panels etc. The PLC automatically
recognizes the type of command format and will respond with the correct
response. These are accomplished without any user intervention and
without any need to configure the PLC at all!

Both MODBUS and Omron protocols use the same device ID address (00 to
FF) as the native protocol described in Chapter 3. Since the addresses of
I/O and internal variables in the T100M+ PLC are organized very differently
from the OMRON or Modicon PLCs, we need to mapmap these addresses to
the corresponding memory areas in the other PLCs so that they can be
easily accessed by their corresponding protocols. All I/Os, timers, counters,
internal relays and data memory DM[1] to DM[4000] are mapped to
Modbus Holding Registers space. The Inputs, Outputs, Relays, Timers and
Counters bits are mapped to MODBUS Bit address space as shown in Table
5.1. Note that inputs and outputs bits are always mapped according to
Table 5.1 whether it is MODBUS function 01, 02 or 05.

However, 32 bit variables and string variables are not mapped since they
are fundamentally quite different in their implementation among different
PLCs. Internal variables which are not mapped can be still be accessed by
copying the contents of these variables to unused data memory DM[n]
(these can be easily accomplished within a CusFn) so that they can be
accessed by these third party protocols.

5.1 MODBUS ASCII Protocol Support

T100M+ supports MODBUS ASCII protocols with the following command
and response format:

START Address Function Data LRC Check CRLF
: 2 chars 2 chars # chars 2 chars 2 chars

The following Function Codes are supported:

01/02 Read I/O bit (Use Bit Address Mapping in Table 5.1)
03/04 Read I/O Word registers

05 Force I/O Bit (Use Bit Address Mapping in Table 5.1).
06 Preset Single Word Register
16 Preset Multiple Word Registers

The exact command/response format of the MODBUS protocol can be
found at http://www.modbus.org. However, if your only purpose is to
interface the PLC to other MODBUS host such as LCD touch panel or
SCADA software then there is no need to know the underlying protocol

T100MD+ & MX+ PLC Chapter 5 : Modbus/Omron Protocols Support

5-2

command format. All you need to know is which PLC’s system Variable
is mapped to which MODBUS register, as shown in Table 5.1.

BIT ADDRESS MAPPING

All the M-series I/O bits are mapped identically to both the MODBUS
“0x” and 1x space. The bit register offset is shown in the last column of
Table 5.1. Although MODBUS name the 0x address space as “Coil
(which means output bits) and the “1x” address space as “Input Status”
(which means input bits only), the T100M+ PLCs treat both spaces the
same. Some MODBUS drivers only allow “read” from 0x space and
“write” to 1x space but you still use the same offset shown on Table 5.1.

Example:

1) To map a lamp symbol to PLC Input 5, you select the MODBUS

register address 0-0005. You can also map a lamp symbol to the
PLC’s output #2. In that case, you should map it to MODBUS register
address 0-0258.

2) To map a toggle switch symbol to the PLC input #5, if you are

restricted to select only MODBUS 1x address space, then you will
have to map the switch to 1-0005, and likewise you can map the
switch to output #2 using MOBDUS address 1-0258. But if the driver
allows the switch to be mapped to 0x space then you can use
MODBUS register space 0-0005 and 0-0258 for the mapping with
identical result.

WORD ADDRESS MAPPING

As shown in Table 5.1, to access DM[1] from the PLC, you use MODBUS
address space 4-1001 and so on. To access the Real Time Clock Hour
data (TIME[1]), use 4-0513. The I/O channels can also be read or written
as 16-bit words by using the addresses from 4-0001 to 4-0320.

Some MODBUS drivers (such as National Instrument “Looktout” software)
even allow you to manipulate individual bit within a 16-bit word. So it is
also possible to map individual I/O bit to “4x” address space. E.g. Input
bit #1 can be mapped to 4-0001.1 and output bit #2 is mapped to 4-
0257.2, etc. This is how it is shown in Table 5.1. However, if you do not
need to manipulate the individual bit then you simply use the address
4-0001 to access the system variable INPUT[1]. and address 4-0257 to
access the system variable OUTPUT[1]. Note that INPUT[1] and OUTPUT[1]
are TBASIC system variables and they each contain 16 bits that reflect
the on/off status of the actual physical input and output bits #1 to #16.

T100MD+ & MX+ PLC Chapter 5 : Modbus/Omron Protocols Support

5-3

Table 5.1: Memory Mapping of T100M+ to other PLCs

T100M+ I/O # OMRON
MODBUS Word
Addr. mapping

MODBUS Bit
Addr. Mapping

Input n n
 1 to 16 IR00.0 to IR00.15 40001.1 to 40001.16 1 to16
 17 to 32 IR01.0 to IR01.15 40002.1 to 40002.16 17 to 32
 33 to 48 IR02.0 to IR02.15 40003.1 to 40003.16 33 to 48
 49 to 64 IR03.0 to IR03.15 40004.1 to 40004.16 49 to 64
 65 to 80 IR04.0 to IR04.15 40005.1 to 40005.16 65 to 80
 81 to 96 IR05.0 to IR05.15 40006.1 to 40006.16 81 to 96
Output n 256 + n
 1 to 16 IR16.0 to IR16.15 40017.1 to 40017.16 257 to 272
 17 to 32 IR17.0 to IR17.15 40018.1 to 40018.16 273 to 288
 33 to 48 IR18.0 to IR18.15 40019.1 to 40019.16 289 to 304
 49 to 64 IR19.0 to IR19.15 40020.1 to 40020.16 305 to 320
 65 to 80 IR20.0 to IR20.15 40021.1 to 40021.16 321 to 336
 81 to 96 IR21.0 to IR21.15 40022.1 to 40022.16 337 to 352
Timer n 512+n
 1 to 16 IR32.0 to IR32.15 40033.1 to 40033.16 513 to 528
 17 to 32 IR33.0 to IR33.15 40034.1 to 40034.16 529 to 544
 33 to 48 IR34.0 to IR34.15 40035.1 to 40035.16 545 to 560
 49 to 64 IR35.0 to IR35.15 40036.1 to 40036.16 561 to 576
Counter n 768 + n
 1 to 16 IR48.0 to IR48.15 40049.1 to 40049.16 769 to 784
 17 to 32 IR49.0 to IR49.15 40050.1 to 40050.16 785 to 800
 33 to 48 IR50.0 to IR50.15 40051.1 to 40051.16 801 to 816
 49 to 64 IR51.0 to IR51.15 40052.1 to 40052.16 817 to 832

Relay n 1024 + n
 1 to 16 IR64.0 to IR64.15 40065.1 to 40065.16 1025 to 1040
 17 to 32 IR65.0 to IR65.15 40066.1 to 40066.16 1041 to 1056
 33 to 48 IR66.0 to IR66.15 40067.1 to 40067.16 1057 to 1072
 49 to 64 IR67.0 to IR67.15 40068.1 to 40068.16 1073 to 1088

 65 to 80 IR68.0 to IR68.15 40069.1 to 40069.16 1089 to 1104
 81 to 96 IR69.0 to IR69.15 40070.1 to 40070.16 1105 to 1120
 97 to 112 IR70.0 to IR70.15 40071.1 to 40071.16 1121 to 1136
 113 to 128 IR71.0 to IR71.15 40072.1 to 40072.16 1137 to 1152

 129 to 144 IR72.0 to IR72.15 40073.1 to 40073.16 1153 to 1168
 145 to 160 IR73.0 to IR73.15 40074.1 to 40074.16 1169 to 1184
 161 to 176 IR74.0 to IR74.15 40075.1 to 40075.16 1185 to 1200
 177 to 192 IR75.0 to IR75.15 40076.1 to 40076.16 1201 to 1216

 193 to 208 IR76.0 to IR76.15 40077.1 to 40077.16 1217 to 1232
 209 to 224 IR77.0 to IR77.15 40078.1 to 40078.16 1233 to 1248

 497 to 512 IR96.0 to IR96.15 40097.1 to 40097.16 1521 to 1536

* MODBUS is a registered trademark of Groupe Schneider.
OMRON is a registered trademark of OMRON Corporation.

T100MD+ & MX+ PLC Chapter 5 : Modbus/Omron Protocols Support

5-4

T100M+ Variables OMRON MODBUS
Timer
Present Values

1 to 64 IR128 to IR191 40129 to 40192

Counter
Present Values

1 to 64 IR256 to IR319 40257 to 40320

Clock TIME[1]
TIME[2]
TIME[3]

IR512
IR513
IR514

40513
40514
40515

Date DATE[1]
DATE[2]
DATE[3]
DATE[4]

IR516
IR517
IR518
IR519

40517
40518
40519
40520

Data Memory DM[1]
DM[2]
….
DM[4000]

DM[1]
DM[2]
….
DM[4000]

41001
41002
….
45000

5.2 MODBUS RTU Protocol Support

The new Rev D of the T100MD+ or T100MX+ PLCs also supports the
MODBUS RTU protocol. The difference between the ASCII and RTU
protocols is that the latter transmits binary data directly instead of
converting one byte of binary data into two ASCII characters. A
message frame is determined by the silent interval of 3.5 character
times between characters received at the COMM port. Other than
that, the function codes and memory mappings are identical to the
MODBUS ASCII protocol. Table 5.1 therefore applies to MODBUS RTU
protocol as well.

MOBBUS RTU has following command and response format:

StartStart AddressAddress FunctionFunction DataData CRC 16CRC 16 ENDEND
Silence of 3.5

char times
1 byte 1 byte # byte 2 bytes Silence of 3.5

char times

The following Function Codes are supported:

01/02 Read I/O bit (Use Bit Address Mapping in Table 5.1)
03/04 Read I/O Word registers

05 Force I/O Bit (Use Bit Address Mapping in Table 5.1).
06 Preset Single Word Register
16 Preset Multiple Word Registers

T100MD+ & MX+ PLC Chapter 5 : Modbus/Omron Protocols Support

5-5

5.3 OMRON Host Link Command Support

Command Type Header Level of Support

a) TEST TS Full support
b) STATUS READ MS Full support
c) ERROR Read MF Dummy (always good)
d) IR Area READ RR Full support (0000 to 1000)
e) HR, AR, LR Area
 & TC Status READ

RH Dummy (always returns “0000”)

f) DM AREA READ RD Full support
g) PV READ RC Dummy (always returns “0000”)
h) Status Write SC Dummy (always OK)
l) IR Area WRITE WR Full Support
j) HR, AR, LR Area
 & TC Status WRITE

WH, WJ,
WL, WG

Dummy (always OK)

k) DM Area WRITE WD Full Support (from DM0001-DM4000)
l) FORCED SET KSCIO

KRCIO
Full Support for IR Area only
Dummy for other areas.

m) Registered I/O Read
 for Channel or Bit

QQMR/
QQIR

Full Support for IR and DM only
Dummy for other areas (always 0000)

Some OMRON host link commands are described in Section 4.45. For
other commands please refer to Omron C20H/C40H PLC Operation
manual published by OMRON Corporation. If your purpose is only to
use the PLC’s OMRON mode with SCADA or HMI then there is no need
to learn the actual command/response format.

5.4 Application Example: Interfacing to SCADA Software

SCADA software or MMI systems (also known as LCD Touch Panels)
normally use object-oriented programming method. Graphical objects
such as switches indicator lights or meters, etc., are picked from the
library and then assigned to a certain I/O or internal data address of
the PLC. When designing a SCADA system, first you need to define the
PLC type. You can choose the MODBUS ASCII, MODBUS RTU or OMRON
C20H. Once a graphical object has been created, you will need to
edit its connection and at this point you will be presented with a
selection table that correspond to the memory map of that PLC type.

Example 1: To connect an indicator lamp to Input #9 of the PLC.

You will need to program the switch to connect to IR00.8 for OMRON
protocol. However, If you have defined the PLC as MODBUS type then
this indicator lamp should be connected to bit address 1-0265. In
either case there is no need to learn about the actual command
format of the protocol itself, as the SCADA software will automatically
generate the required commands to access the input address that
has been chosen for the object.

T100MD+ & MX+ PLC Chapter 5 : Modbus/Omron Protocols Support

5-6

Example 2: To display reading from ADC #3 as a bar graph on SCADA.

Since the data from ADC #3 is not directly mapped to MODBUS or
OMRON in Table 5.1, you need to add a statement in the custom
function that reads the ADC #3 and copy it into a data memory, e.g.,

 DM[100] = ADC(3)

Now you can program the bar graph on the SCADA screen to be
connected to DM[100] if you use OMRON protocol. For MODBUS
protocol the object should be connected to the address: 41100

5.5 Using The T100M+ PLC as MODBUS Master

The T100M+ PLCs supports for MODBUS protocol goes beyond being a
MODBUS slave only. You can use the TBASIC READMOBUS and
WRITEMODBUS commands, as well as READMB2 and WRITEMB2 (for PLC
with firmware revision r44 and above) to send out MODBUS ASCII or RTU
commands to access any other T100M+ PLC or any third party
MODBUS slave devices. The READMODBUS or READMB2 command use
MODBUS Function 03 to read from the slave, and WRITEMODBUS or
WRITEMB2 use MODBUS Function 16 to write to the slave.

Note that when using READMODBUS or WRITEMODBUS command, the
40001 address stated in Table 5.1 should be interpreted as address
0000, and 40002 as address 0001 …. 41001 as address 1000, etc. This
is in accordance with the specifications stated in MODBUS protocol.
MODICON defined zero offset address for the MODBUS protocol, yet in
their holding register definition these are supposed to start from
address 40001 - hence the unusual correspondence. But to maintain
compatibility with the MODBUS specifications we have to adhere to
their definitions.

M+ PLC As MODBUS RTU MasterM+ PLC As MODBUS RTU Master

The new Rev. D T100M+ PLC can also act as a MODBUS RTU master!
The same READMODBUS and WRITEMOBUS commands can be used to
send and receive MODBUS RTU commands. What you need to do is to
add 10 (decimal) to the COMM port number to signal to the processor
that you wish to use MODBUS RTU instead of ASCII to talk to the slaves.
I.e. you should specify port #11 to use RTU commands on COMM1,
and specify port #13 to use RTU commands on COMM3. E.g. the
statement DM[10] = READMODBUS (13, 8, 16) will access via COMM3
the slave with ID = 08 and read the content of register #16. This
register corresponds to MODICON address 40017 and is the OUTPUT[1]
of the slave PLC. The ability to speak MODBUS RTU greatly extends the
type of peripherals that can be used with a T100M+ PLC. You can now
make use of many off-the-shelf, third party RTU devices to extend the
PLC capability, making the M-series truly super PLCs!

Copyright 2001-2004
 Triangle Research International

All rights Reserved

